Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(7): 077701, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169055

RESUMO

Semiconductor holes with strong spin-orbit coupling allow all-electrical spin control, with broad applications ranging from spintronics to quantum computation. Using a two-dimensional hole system in a gallium arsenide quantum well, we demonstrate a new mechanism of electrically controlling the Zeeman splitting, which is achieved through altering the hole wave vector k. We find a threefold enhancement of the in-plane g-factor g_{∥}(k). We introduce a new method for quantifying the Zeeman splitting from magnetoresistance measurements, since the conventional tilted field approach fails for two-dimensional systems with strong spin-orbit coupling. Finally, we show that the Rashba spin-orbit interaction suppresses the in-plane Zeeman interaction at low magnetic fields. The ability to control the Zeeman splitting with electric fields opens up new possibilities for future quantum spin-based devices, manipulating non-Abelian geometric phases, and realizing Majorana systems in p-type superconductor systems.

2.
Phys Rev Lett ; 101(24): 246801, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113643

RESUMO

We report Coulomb drag measurements on GaAs-AlGaAs electron-hole bilayers. The two layers are separated by a 10 or 25 nm barrier. Below T approximately 1 K we find two features that a Fermi-liquid picture cannot explain. First, the drag on the hole layer shows an upturn, which may be followed by a downturn. Second, the effect is either absent or much weaker in the electron layer, even though the measurements are within the linear response regime. Correlated phases have been anticipated in these, but surprisingly, the experimental results appear to contradict Onsager's reciprocity theorem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA