Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Innate Immun ; 29(5): 61-70, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37306239

RESUMO

Vaping is an increasing health threat in the US and worldwide. The damaging impact of vaping on the human distal lung has been highlighted by the recent epidemic of electronic cigarette or vaping use-associated lung injury (EVALI). The pathogenesis of EVALI remains incompletely understood, due to a paucity of models that recapitulate the structural and functional complexity of the human distal lung and the still poorly defined culprit exposures to vaping products and respiratory viral infections. Our aim was to establish the feasibility of using single cell RNA-sequencing (scRNA-seq) technology in human precision-cut lung slices (PCLS) as a more physiologically relevant model to better understand how vaping regulates the antiviral and pro-inflammatory response to influenza A virus infection. Normal healthy donor PCLS were treated with vaping extract and influenza A viruses for scRNA-seq analysis. Vaping extract augmented host antiviral and pro-inflammatory responses in structural cells such as lung epithelial cells and fibroblasts, as well as in immune cells such as macrophages and monocytes. Our findings suggest that human distal lung slice model is useful to study the heterogeneous responses of immune and structural cells under EVALI conditions, such as vaping and respiratory viral infection.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Viroses , Humanos , Vaping/efeitos adversos , Pulmão , Antivirais , RNA
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901724

RESUMO

The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-ß and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A , Influenza Humana , Adolescente , Humanos , Adulto Jovem , Anticorpos Neutralizantes/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/patologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Arch Toxicol ; 96(8): 2319-2328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672461

RESUMO

Electronic cigarettes or vaping products have been marketed as a safer alternative to smoking, but very little is known about the health effects in the human lung, particularly in the distal airways, a key site of airway obstruction and destruction in chronic obstructive pulmonary disease that is often exacerbated by viral infections. The aim of this study was to investigate the effects of electronic cigarette vapor (e-vapor) on human distal airway epithelial responses to influenza A virus (IAV) infection. We isolated primary small airway epithelial cells (SAECs) from donor lungs free of lung disease, and cultured them at air-liquid interface (ALI). To measure markers of epithelial injury such as integrity of epithelial barrier structure and function, we selected a regimen of non-toxic, barrier preserving e-vapor exposure of cultured cells to 15 puffs of e-vapor from a commercially available e-cigarette once per day for 3 days, prior to IAV infection. After 72 h of infection, media and cell lysates were collected to measure cytokines involved in inflammatory and antiviral responses. Pre-exposure to e-vapor with IAV infection, compared to IAV infection alone, significantly increased inflammatory and antiviral mediators including IL-8, CXCL10, IFN-beta, and MX1. Our results suggest that e-vapor exposure amplifies human distal airway pro-inflammatory response to IAV infection, independently of the severity of cell injury during viral infection.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A , Influenza Humana , Viroses , Antivirais/farmacologia , Células Epiteliais , Epitélio , Humanos , Pulmão
4.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33419885

RESUMO

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions. METHODS: We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2. RESULTS: We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways. We focused on human small airway epithelial cells (SAECs), central to the pathogenesis of lung injury following viral infections. Primary SAECs from nondiseased donor lungs apically infected (at the air-liquid interface) with IAV (up to 3×105 pfu; ∼1 multiplicity of infection) markedly (eight-fold) boosted the expression of ACE2, paralleling that of STAT1, a transcription factor activated by viruses. IAV increased the apparent electrophoretic mobility of intracellular ACE2 and generated an ACE2 fragment (90 kDa) in apical secretions, suggesting cleavage of this receptor. In addition, IAV increased the expression of two proteases known to cleave ACE2, sheddase ADAM17 (TACE) and TMPRSS2 and increased the TMPRSS2 zymogen and its mature fragments, implicating proteolytic autoactivation. CONCLUSION: These results indicate that IAV amplifies the expression of molecules necessary for SARS-CoV-2 infection of the distal lung. Furthermore, post-translational changes in ACE2 by IAV may increase vulnerability to lung injury such as acute respiratory distress syndrome during viral co-infections. These findings support efforts in the prevention and treatment of influenza infections during the COVID-19 pandemic.


Assuntos
COVID-19 , Influenza Humana , Células Epiteliais , Humanos , Pandemias , Peptidil Dipeptidase A , SARS-CoV-2
5.
J Inflamm Res ; 13: 175-185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368126

RESUMO

PURPOSE: Electronic cigarettes (e-cigs) are relatively new devices that allow the user to inhale a heated and aerosolized solution. At present, little is known about their health effects in the human lung, particularly in the small airways (<2 mm in diameter), a key site of airway obstruction and destruction in chronic obstructive pulmonary disease and other acute and chronic lung conditions. The aim of this study was to investigate the effect of e-cigarettes on human distal airway inflammation and remodeling. METHODS: We isolated primary small airway epithelial cells from donor lungs without known lung disease. Small airway epithelial cells were cultured at air-liquid interface and exposed to 15 puffs vapor obtained by heating a commercially available e-cigarette solution (e-vapor) with or without nicotine. After 24 hrs of e-vapor exposure, basolateral and apical media as well as cell lysates were collected to measure the pleiotropic cytokine interleukin 6 (IL6) and MUC5AC, one of the major components in mucus. RESULTS: Unlike the nicotine-containing e-vapor, nicotine-free e-vapor significantly increased the amount of IL6, which was coupled with increased levels of intracellular MUC5AC protein. Importantly, a neutralizing IL6 antibody (vs an IgG isotype control) significantly inhibited the production of MUC5AC induced by nicotine-free e-vapor. CONCLUSION: Our results suggest that human small airway epithelial cells exposed to nicotine-free e-vapor increase the inflammatory response and mucin production, which may contribute to distal lung airflow limitation and airway obstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...