Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Diab Rep ; 20(12): 83, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301104

RESUMO

PURPOSE OF REVIEW: Cardiovascular disease (CVD) is one of the leading causes of death globally. Nutrition plays a central role in CVD risk by affecting aging, adiposity, glycemia, blood pressure, cholesterol, inflammation, and other risk factors and can affect CVD risk not only based on calorie intake and dietary composition but also the timing and range of meals. This review evaluates the effects of fasting, fasting-mimicking diets, and time-restricted eating on the reduction of CVD risk factors and provides initial data on their potential to serve as CVD prevention and treatment therapies. RECENT FINDINGS: Intermittent fasting (IF), time-restricted eating (TRE), prolonged fasting (PF), and fasting-mimicking diets (FMD) show promise in the reduction of CVD risk factors. Results on IF, TRE, PF, and FMD on CVD risk factors are significant and often independent of weight loss, yet long-term studies on their effect on CVD are still lacking. Coupling periodic and prolonged, or intermittent and more frequent cycles of fasting or fasting-mimicking diets, designed to maximize compliance and minimize side effects, has the potential to play a central role in the prevention and treatment of CVD and metabolic syndrome.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Doenças Cardiovasculares/prevenção & controle , Dieta , Ingestão de Energia , Jejum , Humanos
2.
J Mol Med (Berl) ; 97(4): 437-450, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30729280

RESUMO

Despite human healthcare advances, some microorganisms continuously react evolving new survival strategies, choosing between a commensal fitness and a pathogenic attitude. Many opportunistic microbes are becoming an increasing cause of clinically evident infections while several renowned infectious diseases sustain a considerable number of deaths. Besides the primary and extensively investigated role of immune cells, other cell types are involved in the microbe-host interaction during infection. Interestingly, mesenchymal stem cells (MSCs), the current leading players in cell therapy approaches, have been suggested to contribute to tackling pathogens and modulating the host immune response. In this context, this review critically explores MSCs' role in E. coli, S. aureus, and polymicrobial infections. Summarizing from various studies, in vitro and in vivo results support the mechanistic involvement of MSCs and their derivatives in fighting infection and in contributing to microbial spreading. Our work outlines the double face of MSCs during infection, disease, and sepsis, highlighting potential pitfalls in MSC-based therapy due to the MSCs' susceptibility to pathogens' weapons. We also identify potential targets to improve infection treatments, and propose the potential applications of MSCs for vaccine research.


Assuntos
Infecções Bacterianas/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Infecções Bacterianas/terapia , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/terapia , Humanos , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/terapia , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA