Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267990

RESUMO

Given the relationship between vitamin D deficiency (VDD) and adverse outcomes of metabolic diseases, we investigated the interplay of dietary and genetic components on vitamin D levels and metabolic traits in young adults from Brazil. Genetic analysis, dietary intake, and anthropometric and biochemical measurements were performed in 187 healthy young adults (19−24 years). Genetic risk scores (GRS) from six genetic variants associated with vitamin D (vitamin D-GRS) and 10 genetic variants associated with metabolic disease (metabolic-GRS) were constructed. High vitamin D-GRS showed a significant association with low 25(OH)D concentrations (p = 0.001) and high metabolic-GRS showed a significant association with high fasting insulin concentrations (p = 0.045). A significant interaction was found between vitamin D-GRS and total protein intake (g/day) (adjusted for non-animal protein) on 25(OH)D (pinteraction = 0.006), where individuals consuming a high protein diet (≥73 g/d) and carrying >4 risk alleles for VDD had significantly lower 25(OH)D (p = 0.002) compared to individuals carrying ≤4 risk alleles. Even though our study did not support a link between metabolic-GRS and vitamin D status, our study has demonstrated a novel interaction, where participants with high vitamin D-GRS and consuming ≥73 g of protein/day had significantly lower 25(OH)D levels. Further research is necessary to evaluate the role of animal protein consumption on VDD in Brazilians.


Assuntos
Proteínas Alimentares , Vitamina D , Brasil/epidemiologia , Fatores de Risco , Vitamina D/metabolismo , Vitaminas
2.
J Diabetes Metab Disord ; 20(2): 1337-1347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900785

RESUMO

PURPOSE: The development of metabolic diseases such as type 2 diabetes (T2D) is closely linked to a complex interplay between genetic and dietary factors. The prevalence of abdominal obesity, hyperinsulinemia, dyslipidaemia, and high blood pressure among Brazilian adolescents is increasing and hence, early lifestyle interventions targeting these factors might be an effective strategy to prevent or slow the progression of T2D. METHODS: We aimed to assess the interaction between dietary and genetic factors on metabolic disease-related traits in 200 healthy Brazilian young adults. Dietary intake was assessed using 3-day food records. Ten metabolic disease-related single nucleotide polymorphisms (SNPs) were used to construct a metabolic-genetic risk score (metabolic-GRS). RESULTS: We found significant interactions between the metabolic-GRS and total fat intake on fasting insulin level (Pinteraction = 0.017), insulin-glucose ratio (Pinteraction = 0.010) and HOMA-B (Pinteraction = 0.002), respectively, in addition to a borderline GRS-fat intake interaction on HOMA-IR (Pinteraction = 0.051). Within the high-fat intake category [37.98 ± 3.39% of total energy intake (TEI)], individuals with ≥ 5 risk alleles had increased fasting insulin level (P = 0.021), insulin-glucose ratio (P = 0.010), HOMA-B (P = 0.001) and HOMA-IR (P = 0.053) than those with < 5 risk alleles. CONCLUSION: Our study has demonstrated a novel GRS-fat intake interaction in young Brazilian adults, where individuals with higher genetic risk and fat intake had increased glucose and insulin-related traits than those with lower genetic risk. Large intervention and follow-up studies with an objective assessment of dietary factors are needed to confirm our findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-021-00863-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...