Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(20): 21948-21963, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799368

RESUMO

Due to the growth in the number of patients and the complexity involved in anticancer therapies, new therapeutic approaches are urgent and necessary. In this context, compounds containing the selenium atom can be employed in developing new medicines due to their potential therapeutic efficacy and unique modes of action. Furthermore, tellurium, a previously unknown element, has emerged as a promising possibility in chalcogen-containing compounds. In this study, 13 target compounds (9a-i, 10a-c, and 11) were effectively synthesized as potential anticancer agents, employing a CuI-catalyzed Csp-chalcogen bond formation procedure. The developed methodology yielded excellent results, ranging from 30 to 85%, and the compounds were carefully characterized. Eight of these compounds showed promise as potential therapeutic drugs due to their high yields and remarkable selectivity against SCC-9 cells (squamous cell carcinoma). Compound 10a, in particular, demonstrated exceptional selectivity, making it an excellent choice for cancer cell targeting while sparing healthy cells. Furthermore, complementing in silico and molecular docking studies shed light on their physical features and putative modes of action. This research highlights the potential of these compounds in anticancer treatments and lays the way for future drug development efforts.

2.
Cell Death Dis ; 11(2): 105, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029741

RESUMO

Lipid droplets (also known as lipid bodies) are lipid-rich, cytoplasmic organelles that play important roles in cell signaling, lipid metabolism, membrane trafficking, and the production of inflammatory mediators. Lipid droplet biogenesis is a regulated process, and accumulation of these organelles within leukocytes, epithelial cells, hepatocytes, and other nonadipocyte cells is a frequently observed phenotype in several physiologic or pathogenic situations and is thoroughly described during inflammatory conditions. Moreover, in recent years, several studies have described an increase in intracellular lipid accumulation in different neoplastic processes, although it is not clear whether lipid droplet accumulation is directly involved in the establishment of these different types of malignancies. This review discusses current evidence related to the biogenesis, composition and functions of lipid droplets related to the hallmarks of cancer: inflammation, cell metabolism, increased proliferation, escape from cell death, and hypoxia. Moreover, the potential of lipid droplets as markers of disease and targets for novel anti-inflammatory and antineoplastic therapies will be discussed.


Assuntos
Transformação Celular Neoplásica/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias/metabolismo , Animais , Morte Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Metabolismo Energético , Humanos , Mediadores da Inflamação/metabolismo , Gotículas Lipídicas/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Hipóxia Tumoral , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-31707060

RESUMO

Using long-term, remote recordings of heart rate (fH) on fully recovered, undisturbed lizards, we identified several components of heart rate variability (HRV) associated with respiratory sinus arrhythmia (RSA): 1.) A peak in the spectral representation of HRV at the frequency range of ventilation. 2.) These cardiorespiratory interactions were shown to be dependent on the parasympathetic arm of the autonomic nervous system. 3.) Vagal preganglionic neurons are located in discrete groups located in the dorsal motor nucleus of the vagus and also, in a ventro-lateral group, homologous to the nucleus ambiguus of mammals. 4.) Myelinated nerve fibers in the cardiac vagus enabling rapid communication between the central nervous system and the heart. Furthermore, the study of the progressive recovery of fH in tegu following anesthesia and instrumentation revealed that 'resting' levels of mean fH and reestablishment of HRV occurred over different time courses. Accordingly, we suggest that, when an experiment is designed to study a physiological variable reliant on autonomic modulation at its normal, resting level, then postsurgical reestablishment of HRV should be considered as the index of full recovery, rather than mean fH.


Assuntos
Sistema Nervoso Autônomo , Frequência Cardíaca/fisiologia , Coração/anatomia & histologia , Coração/fisiopatologia , Lagartos/fisiologia , Recuperação de Função Fisiológica , Nervo Vago/fisiopatologia , Anestesia/métodos , Animais , Masculino , Modelos Teóricos , Respiração , Nervo Vago/anatomia & histologia
4.
Cells ; 8(5)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137684

RESUMO

P-glycoprotein (Pgp/ABCB1) overexpression is associated with multidrug resistance (MDR) phenotype and, consequently, failure in cancer chemotherapy. However, molecules involved in cell death deregulation may also support MDR. Tumor necrosis factor-alpha (TNF-α) is an important cytokine that may trigger either death or tumor growth. Here, we examined the role of cancer cells in self-maintenance and promotion of cellular malignancy through the transport of Pgp and TNF-α molecules by extracellular vesicles (membrane microparticles (MP)). By using a classical MDR model in vitro, we identified a positive correlation between endogenous TNF-α and Pgp, which possibly favored a non-cytotoxic effect of recombinant TNF-α (rTNF-α). We also found a positive feedback involving rTNF-α incubation and TNF-α regulation. On the other hand, rTNF-α induced a reduction in Pgp expression levels and contributed to a reduced Pgp efflux function. Our results also showed that parental and MDR cells spontaneously released MP containing endogenous TNF-α and Pgp. However, these MP were unable to transfer their content to non-cancer recipient cells. Nevertheless, MP released from parental and MDR cells elevated the proliferation index of non-tumor cells. Collectively, our results suggest that Pgp and endogenous TNF-α positively regulate cancer cell malignancy and contribute to changes in normal cell behavior through MP.


Assuntos
Proliferação de Células , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retroalimentação Fisiológica , Fibroblastos/metabolismo , Humanos , Células KB , Neoplasias/patologia , Transporte Proteico , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa/genética
5.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30967516

RESUMO

ECG recordings were obtained using an implanted telemetry device from the South American rattlesnake, Crotalus durissus, held under stable conditions without restraining cables or interaction with researchers. Mean heart rate (fH) recovered rapidly (<24 h) from anaesthesia and operative procedures. This preceded a more gradual development of heart rate variability (HRV), with instantaneous fH increasing during each lung ventilation cycle. Atropine injection increased mean fH and abolished HRV. Complete autonomic blockade revealed a cholinergic tonus on the heart of 55% and an adrenergic tonus of 37%. Power spectral analysis of HRV identified a peak at the same frequency as ventilation. This correlation was sustained after temperature changes and it was more evident, marked by a more prominent power spectrum peak, when ventilation is less episodic. This HRV component is homologous to that observed in mammals, termed respiratory sinus arrhythmia (RSA). Evidence for instantaneous control of fH indicated rapid conduction of activity in the cardiac efferent nervous supply, as supported by the description of myelinated fibres in the cardiac vagus. Establishment of HRV 10 days after surgical intervention seems a reliable indicator of the re-establishment of control of integrative functions by the autonomic nervous system. We suggest that this criterion could be applied to other animals exposed to natural or imposed trauma, thus improving protocols involving animal handling, including veterinarian procedures.


Assuntos
Antiarrítmicos/farmacologia , Atropina/farmacologia , Crotalus/fisiologia , Frequência Cardíaca , Arritmia Sinusal Respiratória , Animais , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Arritmia Sinusal Respiratória/efeitos dos fármacos , Telemetria/veterinária
6.
Mol Cell Biol ; 39(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782775

RESUMO

Intracellular lipid accumulation has been associated with a poor prognosis in cancer. We have previously reported the involvement of lipid droplets in cell proliferation in colon cancer cells, suggesting a role for these organelles in cancer development. In this study, we evaluate the role of lipid droplets in cell cycle regulation and cellular transformation. Cell cycle synchronization of NIH 3T3 cells revealed increased numbers and dispersed distribution of lipid droplets specifically during S phase. Also, the transformed cell lineage NIH 3T3-H-rasV12 showed an accumulation of both lipid droplets and PLIN2 protein above the levels in NIH 3T3 cells. PLIN2 gene overexpression, however, was not able to induce NIH 3T3 cell transformation, disproving the hypothesis that PLIN2 is an oncogene. Furthermore, positive PLIN2 staining was strongly associated with highly proliferative Ki-67-positive areas in human colon adenocarcinoma tissue samples. Taken together, these results indicate that cell cycle progression is associated with tight regulation of lipid droplets, a process that is altered in transformed cells, suggesting the existence of a mechanism that connects cell cycle progression and cell proliferation with lipid accumulation.


Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Gotículas Lipídicas/metabolismo , Perilipina-2/metabolismo , Adenocarcinoma/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Células NIH 3T3 , Perilipina-2/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Regulação para Cima
7.
Sci Adv ; 4(2): eaaq0800, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29507882

RESUMO

The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.


Assuntos
Peixes/fisiologia , Coração/fisiologia , Mamíferos/fisiologia , Respiração , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Sistema Nervoso Autônomo/fisiologia , Tronco Encefálico/anatomia & histologia , Peixes/metabolismo , Gases/metabolismo , Coração/inervação , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Condução Nervosa/fisiologia , Nervo Vago/fisiologia , Nervo Vago/ultraestrutura
8.
Cell Cycle ; 14(16): 2667-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017929

RESUMO

Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-ß production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-ß production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Leptina/fisiologia , Gotículas Lipídicas/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/biossíntese , Indução Enzimática , Mucosa Intestinal/citologia , Metabolismo dos Lipídeos , Obesidade/metabolismo , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Cancer Sci ; 106(1): 60-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25457412

RESUMO

Multidrug resistance (MDR) is considered a multifactorial event that favors cancer cells becoming resistant to several chemotherapeutic agents. Numerous mechanisms contribute to MDR, such as P-glycoprotein (Pgp/ABCB1) activity that promotes drug efflux, overexpression of inhibitors of apoptosis proteins (IAP) that contribute to evasion of apoptosis, and oncogenic pathway activation that favors cancer cell survival. MDR molecules have been identified in membrane microparticles (MP) and can be transferred to sensitive cancer cells. By co-culturing MP derived from MDR-positive cells with recipient cells, we showed that sensitive cells accumulated Pgp, IAP proteins and mRNA. In addition, MP promoted microRNA transfer and NFκB and Yb-1 activation. Therefore, our results indicate that MP can induce a multifactorial phenotype in sensitive cancer cells.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Antineoplásicos/farmacologia , Carcinogênese/metabolismo , Técnicas de Cocultura , Humanos , Células K562 , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Int J Oncol ; 38(5): 1365-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21369697

RESUMO

Lithium is a specific inhibitor of GSK3-ß, and hence, an activator of the Wnt/ß-catenin pathway, whereas the epidermal growth factor (EGF) has been linked to malignant transformation in epithelial cancer cells. Both pathways are aberrantly activated in most colorectal cancers (CRCs). However, the relationship between them in modulating events related to the progression of this cancer type remains to be defined. In this study, we investigated whether the Wnt/ß-catenin and EGFR pathways converge to modulate the malignant potential of CRC. We used Caco-2 cells, a well-established model used to study CRC, and treatments with lithium chloride, as a modulator of the Wnt/ß-catenin pathway, and with EGF as an inducer of EGFR signaling. We found that both agents altered the subcellular distribution of claudin-1 and ß-catenin, two important proteins of the apical junctional complex, but not their abundance in the cell. Nuclear stabilization of ß-catenin, a marker of Wnt pathway activation, was observed after treatment with both compounds. However, lithium, but not EGF, inhibited GSK3-ß, indicating that these agents modulate this enzyme in a differential fashion. Furthermore, EGF treatment increased the proliferative and migratory capacity but did not alter the colony formation potential of these cells. Surprisingly, lithium, known to activate the Wnt/ß-catenin pathway, inhibited the increased proliferation by arresting cells in the G2/M phase as well as the cell migration promoted by EGF, as demonstrated by the combined treatment with these agents. Lithium treatment alone reduced the cell colony formation. Thus, our findings suggest that lithium plays an important role in regulating cellular events related to tumor progression in CRC.


Assuntos
Antineoplásicos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Cloreto de Lítio/farmacologia , Transdução de Sinais/fisiologia , Células CACO-2 , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Claudina-1 , Fase G2/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas de Membrana/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/metabolismo
11.
Mol Cell Biol ; 28(23): 7168-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18809576

RESUMO

Nuclear factor of activated T cells (NFAT) was first described as an activation and differentiation transcription factor in lymphocytes. Several in vitro studies suggest that NFAT family members are redundant proteins. However, analysis of mice deficient for NFAT proteins suggested different roles for the NFAT family of transcription factors in the regulation of cell proliferation and apoptosis. NFAT may also regulate several cell cycle and survival factors influencing tumor growth and survival. Here, we demonstrate that two constitutively active forms of NFAT proteins (CA-NFAT1 and CA-NFAT2 short isoform) induce distinct phenotypes in NIH 3T3 cells. Whereas CA-NFAT1 expression induces cell cycle arrest and apoptosis in NIH 3T3 fibroblasts, CA-NFAT2 short isoform leads to increased proliferation capacity and induction of cell transformation. Furthermore, NFAT1-deficient mice showed an increased propensity for chemical carcinogen-induced tumor formation, and CA-NFAT1 expression subverted the transformation of NIH 3T3 cells induced by the H-rasV12 oncogene. The differential roles for NFAT1 are at least partially due to the protein C-terminal domain. These results suggest that the NFAT1 gene acts as a tumor suppressor gene and the NFAT2 short isoform acts gene as an oncogene, supporting different roles for the two transcription factors in tumor development.


Assuntos
Genes Supressores de Tumor , Fatores de Transcrição NFATC/genética , Oncogenes , Células 3T3 , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição NFATC/fisiologia , Fenótipo , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...