Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5029, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977698

RESUMO

Lysine Nɛ-acylations, such as acetylation or succinylation, are post-translational modifications that regulate protein function. In mitochondria, lysine acylation is predominantly non-enzymatic, and only a specific subset of the proteome is acylated. Coenzyme A (CoA) can act as an acyl group carrier via a thioester bond, but what controls the acylation of mitochondrial lysines remains poorly understood. Using published datasets, here we found that proteins with a CoA-binding site are more likely to be acetylated, succinylated, and glutarylated. Using computational modeling, we show that lysine residues near the CoA-binding pocket are highly acylated compared to those farther away. We hypothesized that acyl-CoA binding enhances acylation of nearby lysine residues. To test this hypothesis, we co-incubated enoyl-CoA hydratase short chain 1 (ECHS1), a CoA-binding mitochondrial protein, with succinyl-CoA and CoA. Using mass spectrometry, we found that succinyl-CoA induced widespread lysine succinylation and that CoA competitively inhibited ECHS1 succinylation. CoA-induced inhibition at a particular lysine site correlated inversely with the distance between that lysine and the CoA-binding pocket. Our study indicated that CoA acts as a competitive inhibitor of ECHS1 succinylation by binding to the CoA-binding pocket. Together, this suggests that proximal acylation at CoA-binding sites is a primary mechanism for lysine acylation in the mitochondria.


Assuntos
Acil Coenzima A , Lisina , Lisina/metabolismo , Acilação , Acetilação , Acil Coenzima A/metabolismo , Processamento de Proteína Pós-Traducional , Sítios de Ligação
2.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095012

RESUMO

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Assuntos
COVID-19 , Sirtuínas , Antivirais , Exorribonucleases/metabolismo , Humanos , Lisina , Metiltransferases/metabolismo , NAD , Provírus , RNA Viral/metabolismo , SARS-CoV-2 , Sirtuínas/genética , Proteínas não Estruturais Virais/metabolismo
3.
bioRxiv ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35018374

RESUMO

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 stably interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.

4.
Nat Microbiol ; 5(9): 1144-1157, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541947

RESUMO

Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , HIV-1/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteína Forkhead Box O1/genética , Técnicas de Silenciamento de Genes , Infecções por HIV/virologia , Humanos , Células K562
5.
Urology ; 104: 31-35, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28267605

RESUMO

OBJECTIVE: To examine and characterize the demographics and scholarly characteristics of academic urology chairmen at the time of appointment. MATERIALS AND METHODS: The chairman of each United States urology residency program as of September 2016 was included in the study. Interim chairmen, as well as programs for which no clearly defined chair could be identified, were excluded. Demographic and academic data were collected via publically available curriculum vitae, departmental websites, Google search engine, and PubMed and Scopus websites. RESULTS: One hundred thirteen chairmen were included in the study. The majority were male (96%) and mean age at appointment was 46 years (standard deviation = 6.3 years). Mean number of publications and H-index at the time of appointment was 105 and 31.1, respectively. Fellowship training was completed by 75% of chairmen, of which urologic oncology (N = 43), endourology (N = 12), and infertility/andrology (N = 10) were the most common. The most common additional graduate degrees prior to appointment were MBA (N = 7) and PhD (N = 6). The most frequently attended institutions for residency were Johns Hopkins University (13) and Northwestern University (5), whereas Memorial Sloan Kettering Cancer Center (13) and Baylor University (7) were the most frequent for fellowship. Twenty percent of chairmen attained the chairman position at their former residency program and 7% at their former fellowship program. CONCLUSION: Our study describes the demographic and academic characteristics of urology academic chairmen at the time of appointment. The majority of chairmen are male and specialize in urologic oncology. Chairmen often receive the chair appointment at their former residency program.


Assuntos
Centros Médicos Acadêmicos , Urologia/educação , Centros Médicos Acadêmicos/organização & administração , Adulto , Educação de Pós-Graduação , Feminino , Humanos , Internato e Residência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estados Unidos , Universidades , Urologia/organização & administração , Recursos Humanos
6.
Foodborne Pathog Dis ; 11(7): 529-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24749488

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are a major family of foodborne pathogens of public health, zoonotic, and economic significance in the United States and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal of this study was to assess the potential application of RPA in detection of STEC. This study focused on designing and evaluating RPA primers and fluorescent probes for isothermal (39°C) detection of STEC. Compatible sets of candidate primers and probes were designed for detection of Shiga toxin 1 and 2 (Stx1 and 2), respectively. The sets were evaluated for specificity and sensitivity against STEC (n=12) of various stx genotypes (stx1/stx2, stx1, or stx2, respectively), including non-Stx-producing E. coli (n=28) and other genera (n=7). The primers and probes that were designed targeted amplification of the subunit A moiety of stx1 and stx2. The assay detected STEC in real time (within 5-10 min at 39°C) with high sensitivity (93.5% vs. 90%; stx1 vs. stx2), specificity (99.1% vs. 100%; stx1 vs. stx2), and predictive value (97.9% for both stx1 vs. stx2). Limits of detection of ∼ 5-50 colony-forming units/mL were achieved in serially diluted cultures grown in brain heart infusion broth. This study successfully demonstrated for the first time that RPA can be used for isothermal real-time detection of STEC.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Contagem de Colônia Microbiana , Meios de Cultura , Primers do DNA , DNA Bacteriano/genética , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Limite de Detecção , Recombinases , Sensibilidade e Especificidade , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...