Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543428

RESUMO

Biological treatments involve the application of metallic material coatings to enhance biocompatibility and properties. In invasive therapies, metallic electrodes are utilized, which are implanted in patients. One of these invasive therapeutic procedures is deep brain stimulation (DBS), an effective therapy for addressing the motor disorders observed in patients with Parkinson's disease (PD). This therapy involves the implantation of electrodes (IEs) into the subthalamic nucleus (STN). However, there is still a need for the optimization of these electrodes. Plasma-synthesized polypyrrole doped with iodine (PPPy/I) has been reported as a biocompatible and anti-inflammatory biomaterial that promotes nervous system regeneration. Given this information, the objective of the present study was to develop and characterize a PPPy/I-coated electrode for implantation into the STN. The characterization results indicate a uniform coating along the electrode, and physical-chemical characterization studies were conducted on the polymer. Subsequently, the IEs, both coated and uncoated with PPPy/I, were implanted into the STN of male rats of the Wistar strain to conduct an electrographic recording (EG-R) study. The results demonstrate that the IE coated with PPPy/I exhibited superior power and frequency signals over time compared to the uncoated IE (p < 0.05). Based on these findings, we conclude that an IE coated with PPPy/I has optimized functional performance, with enhanced integrity and superior signal quality compared to an uncoated IE. Therefore, we consider this a promising technological development that could significantly improve functional outcomes for patients undergoing invasive brain therapies.

2.
J Mater Sci Mater Med ; 31(7): 58, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32607849

RESUMO

Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased ßIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as ßIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI. The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and ßIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of ßIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.


Assuntos
Materiais Biocompatíveis , Terapia por Exercício/métodos , Iodo/química , Polímeros/química , Pirróis/química , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/cirurgia , Animais , Coagulação com Plasma de Argônio/métodos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Precipitação Química/efeitos da radiação , Terapia Combinada , Modelos Animais de Doenças , Planejamento Ambiental , Feminino , Injeções Espinhais , Iodo/administração & dosagem , Iodo/efeitos da radiação , Laminectomia , Lasers de Gás/uso terapêutico , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Polímeros/administração & dosagem , Polímeros/síntese química , Polímeros/efeitos da radiação , Pirróis/administração & dosagem , Pirróis/síntese química , Pirróis/efeitos da radiação , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/efeitos dos fármacos , Natação
3.
J Mater Sci Mater Med ; 29(1): 13, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29285620

RESUMO

Traumatic spinal cord injury (TSCI) is a health problem for which there is currently no treatment or definitive therapy. Medicine has explored therapeutic options for patients with TSCI with the aim to improve their quality of life. One alternative has been the development of biomaterials that offer neuroprotection or neuroregeneration of damaged nerve tissue. The microinjection of iodine-doped polypyrrole particles synthesised by plasma (PPPy/I) has shown neuroprotective effects that favour motor function recovery in experimental animals with TSCI. However, their ability to migrate into the tissue has led to the need to test a suspension vehicle that enables the concentration of particles at the site of injury. To achieve this, two biomaterials of PPPy/I (P1 and P2) were studied. The superficial physicochemical characterisation of the polymers was performed by infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle. The rheological performance under oscillatory shear rate of suspensions containing both polymers alone and in combination with bovine serum albumin was also studied. In vivo tests were performed on animals with and without TSCI that were microinjected with particles of P1 or P2 in suspension using a solution of rat serum albumin. Exposure to the protein solutions generates a protein multilayer on the surface of the biomaterials that can drastically change the behaviour of both P1 and P2, which led to severe repercussions in the in vivo assays. The results showed that surface chemistry plays an important role in the performance and that it is possible to treat TSCI with these materials. The interaction of the surface of materials PPPy/I.1 (P1) and PPPy/I.2 (P2) with bovine serum albumin (BSA) resulted in a series of changes in the surface chemistry of both biomaterials. The contact angle study (Fig. A) showed the presence of a critical BSA concentration ([BSA]c), in which a monolayer was formed on both polymers and then a stable protein multilayer, as evidenced by the establishment of a plateau in the determination of the contact angle. In vivo tests showed that this interaction may be beneficial in the treatment of traumatic spinal cord injury (TSCI), depending on the surface characteristics with or without rat serum albumin (RSA). The TSCI + P1 and TSCI + P2 + RSA groups obtained significant differences in functional recovery compared with the control group according to the Basso, Beattie and Bresnahan scale (BBB).


Assuntos
Albuminas/administração & dosagem , Polímeros/química , Pirróis/química , Traumatismos da Medula Espinal/tratamento farmacológico , Adsorção , Animais , Bovinos , Físico-Química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Iodo/química , Oscilometria , Qualidade de Vida , Ratos , Ratos Long-Evans , Reologia , Albumina Sérica/química , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
4.
Spine J ; 17(4): 562-573, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26911415

RESUMO

BACKGROUND CONTEXT: Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. PURPOSE: Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. STUDY DESIGN: This is an in vivo animal study. METHODS: This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. RESULTS: Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r2=0.449, p<.05) and between FA and preserved tissue (r2=0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r2=0.367, p<.05) and between ADC and preserved tissue (r2=0.421, p<.05) were observed. CONCLUSIONS: The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery.


Assuntos
Polímeros/uso terapêutico , Pirróis/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Imagem de Difusão por Ressonância Magnética , Feminino , Iodo/química , Polímeros/administração & dosagem , Polímeros/química , Pirróis/administração & dosagem , Pirróis/química , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/diagnóstico por imagem
5.
J Mater Sci Mater Med ; 26(7): 209, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26169188

RESUMO

Currently, there is no universally accepted treatment for traumatic spinal cord injury (TSCI), a pathology that can cause paraplegia or quadriplegia. Due to the complexity of TSCI, more than one therapeutic strategy may be necessary to regain lost functions. Therefore, the present study proposes the use of implants of mesoparticles (MPs) of polypyrrole/iodine (PPy/I) synthesized by plasma for neuroprotection promotion and functional recovery in combination with treadmill training (TT) for neuroplasticity promotion and maintenance of muscle tone. PPy/I films were synthesized by plasma and pulverized to obtain MPs. Rats with a TSCI produced by the NYU impactor were divided into four groups: Vehicle (saline solution); MPs (PPy/I implant); Vehicle-TT (saline solution + TT); and MPs-TT (PPy/I implant + TT). The vehicle or MPs (30 µL) were injected into the lesion site 48 h after a TSCI. Four days later, TT was carried out 5 days a week for 2 months. Functional recovery was evaluated weekly using the BBB motor scale for 9 weeks and tissue protection using histological and morphometric analysis thereafter. Although the MPs of PPy/I increased nerve tissue preservation (P = 0.03) and promoted functional recovery (P = 0.015), combination with TT did not produce better neuroprotection, but significantly improved functional results (P = 0.000) when comparing with the vehicle group. So, use these therapeutic strategies by separately could stimulate specific mechanisms of neuroprotection and neuroregeneration, but when using together they could mainly potentiate different mechanisms of neuronal plasticity in the preserved spinal cord tissue after a TSCI and produce a significant functional recovery. The implant of mesoparticles of polypyrrole/iodine into the injured spinal cord displayed good integration into the nervous tissue without a response of rejection, as well as an increased in the amount of preserved tissue and a better functional recovery than the group without transplant after a traumatic spinal cord injury by contusion in rats. The relevance of the present results is that polypyrrole/iodine implants were synthesized by plasma instead by conventional chemical or electrochemical methods. Synthesis by plasma modifies physicochemical properties of polypyrrole/iodine implants, which can be responsible of the histological response and functional results. Furthermore, no additional molecules or trophic factors or cells were added to the implant for obtain such results. Even more, when the implant was used together with physical rehabilitation, better functional recovery was obtained than that observed when these strategies were used by separately.


Assuntos
Implantes de Medicamento , Iodo/administração & dosagem , Condicionamento Físico Animal , Polímeros/administração & dosagem , Pirróis/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Microscopia Eletrônica de Varredura , Ratos
6.
J Mater Sci Mater Med ; 23(10): 2583-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22798167

RESUMO

We studied the use of three biocompatible materials obtained by plasma polymerization of pyrrole (PPy), pyrrole doped with iodine (PPy/I) and a copolymer formed with pyrrole and polyethylene glycol (PPy/PEG), implanted, separately, after a complete spinal cord transection in rats. Motor function assessed with the BBB scale and somatosensory evoked potentials (SEPs) in the implanted rats were studied. Results showed that the highest motor recovery was obtained in rats with PPy/I implants. They also showed a significant reduction in the latency of SEPs. Histological analyses showed no signs of implant rejection; on the contrary, implants based on PPy improved the SEPs conduction and motor function after lesion.


Assuntos
Materiais Biocompatíveis , Gases em Plasma , Polímeros/administração & dosagem , Próteses e Implantes , Pirróis/administração & dosagem , Traumatismos da Medula Espinal/fisiopatologia , Animais , Potenciais Somatossensoriais Evocados , Feminino , Microscopia Eletrônica de Varredura , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...