Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(11): 33, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39302644

RESUMO

Purpose: The purpose of this study was to identify and measure plexus-specific absolute retinal capillary blood flow velocity and acceleration in vivo in both nonhuman primates (NHPs) and humans using erythrocyte mediated angiography (EMA) and optical coherence tomography angiography (OCTA). Methods: EMA and OCTA scans centered on the fovea were obtained in 2 NHPs and 11 human subjects. Scans were also obtained in NHP eyes while IOP was experimentally elevated. Erythrocyte velocity and acceleration in retinal arteries, capillaries, and veins were measured and capillaries were categorized based on location within the superficial vascular (SVP), intermediate capillary (ICP), or deep capillary plexus (DCP). Generalized linear mixed models were used to estimate the effects of intraocular pressure (IOP) on capillary blood flow. Results: Capillary erythrocyte velocity at baseline IOP was 0.64 ± 0.29 mm/s in NHPs (range of 0.14 to 1.85 mm/s) and 1.55 ± 0.65 mm/s in humans (range of 0.46 to 4.50 mm/s). Mean erythrocyte velocity in the SVP, ICP, and DCP in NHPs was 0.69 ± 0.29 mm/s, 0.53 ± 0.22 mm/s, and 0.63 ± 0.27 mm/s, respectively (P = 0.14 for NHP-1 and P = 0.28 for NHP-2). Mean erythrocyte velocity in the human subjects did not differ significantly among SVP, ICP, and DCP (1.46 ± 0.59 mm/s, 1.58 ± 0.55 mm/s, and 1.59 ± 0.79 mm/s, P = 0.36). In NHPs, every 1 mm Hg increase in IOP was associated with a 0.13 mm/s reduction in arterial velocity, 0.10 mm/s reduction in venous velocity, and 0.01 mm/s reduction in capillary velocity (P < 0.001) when accounting for differences in mean arterial pressure (MAP). Conclusions: Blood flow by direct visualization of individual erythrocytes can be quantified within capillary plexuses. Capillary velocity decreased with experimental IOP elevation.

2.
Ophthalmol Sci ; 4(5): 100533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071915

RESUMO

Objective: To characterize the effect of netarsudil 0.02% on episcleral blood flow in treatment-naive glaucoma suspect or ocular hypertension subjects. Design: Prospective, unmasked, single-arm cohort study. Participants: Ten treatment-naive patients with a diagnosis of glaucoma suspect or ocular hypertension. Methods: Erythrocyte-mediated angiography (EMA) was used to measure episcleral erythrocyte velocity, vessel diameter, and blood flow at baseline before treatment, 1 hour after drop instillation (T1), 1 to 2 weeks after daily netarsudil 0.02% drop use (T2), and 1 hour after drop instillation at the 1-to-2-week time point (T3). Intraocular pressure (IOP) and blood pressure were measured at each visit. Main Outcome Measures: Change in episcleral venous erythrocyte velocity, diameter, and blood flow between time points analyzed using generalized estimating equation models. Results: Of the 18 eligible study eyes of 10 enrolled treatment-naive subjects, baseline IOP was 16.8 ± 3.6 mmHg (mean ± standard deviation), which significantly decreased to 13.9 ± 4.2 mmHg at T1, 12.6 ± 4.1 mmHg at T2, and 11.8 ± 4.7 mmHg at T3 (P < 0.05 at each time point compared with baseline). Episcleral vessels averaged 61.3 ± 5.3 µm in diameter at baseline which increased significantly at all posttreatment time points (78.0 ± 6.6, 74.0 ± 5.2, 76.9 ± 6.9 µm, respectively; mean ± standard deviation, P < 0.05 for each time point). Episcleral venous flowrates were 0.40 ± 0.22 uL/minute (mean ± standard deviation) at baseline, which increased significantly to 0.69 ± 0.45 uL/min at T1 (P = 0.01), did not significantly differ at T2 (0.38 ± 0.30 uL/minute), and increased significantly to 0.54 ± 0.32 uL/minute at T3 (P < 0.05 compared with baseline and T2). Conclusions: Netarsudil causes episcleral venous dilation at all time points and resulting increases in episcleral venous flowrates 1 hour after drop instillation. Increased episcleral venous flow, associated with decreased episcleral venous pressure, may result in lowered IOP. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
J Clin Med ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202288

RESUMO

This comprehensive review explores the role of Functional Near-Infrared Spectroscopy (fNIRS) in advancing our understanding of the visual system. Beginning with an introduction to fNIRS, we delve into its historical development, highlighting how this technology has evolved over time. The core of the review critically examines the advantages and disadvantages of fNIRS, offering a balanced view of its capabilities and limitations in research and clinical settings. We extend our discussion to the diverse applications of fNIRS beyond its traditional use, emphasizing its versatility across various fields. In the context of the visual system, this review provides an in-depth analysis of how fNIRS contributes to our understanding of eye function, including eye diseases. We discuss the intricacies of the visual cortex, how it responds to visual stimuli and the implications of these findings in both health and disease. A unique aspect of this review is the exploration of the intersection between fNIRS, virtual reality (VR), augmented reality (AR) and artificial intelligence (AI). We discuss how these cutting-edge technologies are synergizing with fNIRS to open new frontiers in visual system research. The review concludes with a forward-looking perspective, envisioning the future of fNIRS in a rapidly evolving technological landscape and its potential to revolutionize our approach to studying and understanding the visual system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA