Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Phys Chem B ; 128(20): 4898-4910, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733339

RESUMO

In-depth characterization of fundamental folding steps of small model peptides is crucial for a better understanding of the folding mechanisms of more complex biomacromolecules. We have previously reported on the folding/unfolding kinetics of a model α-helix. Here, we study folding transitions in chignolin (GYDPETGTWG), a short ß-hairpin peptide previously used as a model to study conformational changes in ß-sheet proteins. Although previously suggested, until now, the role of the Tyr2-Trp9 interaction in the folding mechanism of chignolin was not clear. In the present work, pH-dependent conformational changes of chignolin were characterized by circular dichroism (CD), nuclear magnetic resonance (NMR), ultrafast pH-jump coupled with time-resolved photoacoustic calorimetry (TR-PAC), and molecular dynamics (MD) simulations. Taken together, our results present a comprehensive view of chignolin's folding kinetics upon local pH changes and the role of the Tyr2-Trp9 interaction in the folding process. CD data show that chignolin's ß-hairpin formation displays a pH-dependent skew bell-shaped curve, with a maximum close to pH 6, and a large decrease in ß-sheet content at alkaline pH. The ß-hairpin structure is mainly stabilized by aromatic interactions between Tyr2 and Trp9 and CH-π interactions between Tyr2 and Pro4. Unfolding of chignolin at high pH demonstrates that protonation of Tyr2 is essential for the stability of the ß-hairpin. Refolding studies were triggered by laser-induced pH-jumps and detected by TR-PAC. The refolding of chignolin from high pH, mainly due to the protonation of Tyr2, is characterized by a volume expansion (10.4 mL mol-1), independent of peptide concentration, in the microsecond time range (lifetime of 1.15 µs). At high pH, the presence of the deprotonated hydroxyl (tyrosinate) hinders the formation of the aromatic interaction between Tyr2 and Trp9 resulting in a more disorganized and dynamic tridimensional structure of the peptide. This was also confirmed by comparing MD simulations of chignolin under conditions mimicking neutral and high pH.


Assuntos
Simulação de Dinâmica Molecular , Oligopeptídeos , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Cinética , Oligopeptídeos/química , Estrutura Secundária de Proteína
2.
J Sci Food Agric ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520251

RESUMO

BACKGROUND: Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 µmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS: After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION: For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Int J Biol Macromol ; 263(Pt 2): 130279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401585

RESUMO

Despite ortho-quinones showing several biological and pharmacological activities, there is still a lack of biophysical characterization of their interaction with albumin - the main carrier of different endogenous and exogenous compounds in the bloodstream. Thus, the interactive profile between bovine serum albumin (BSA) with ß-lapachone (1) and its corresponding synthetic 3-sulfonic acid (2, under physiological pH in the sulphonate form) was performed. There is one main binding site of albumin for both ß-lapachones (n ≈ 1) and a static fluorescence quenching mechanism was proposed. The Stern-Volmer constant (KSV) values are 104 M-1, indicating a moderate binding affinity. The enthalpy (-3.41 ± 0.45 and - 8.47 ± 0.37 kJ mol-1, for BSA:1 and BSA:2, respectively) and the corresponding entropy (0.0707 ± 0.0015 and 0.0542 ± 0.0012 kJ mol-1 K-1) values indicate an enthalpically and entropically binding driven. Hydrophobic interactions and hydrogen bonding are the main binding forces. The differences in the polarity of 1 and 2 did not change significantly the affinity to albumin. In addition, the 1,2-naphthoquinones showed a similar binding trend compared with 1,4-naphthoquinones.


Assuntos
Naftoquinonas , Ligação Proteica , Espectrometria de Fluorescência , Sítios de Ligação , Termodinâmica , Soroalbumina Bovina/química , Dicroísmo Circular
4.
Plants (Basel) ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337960

RESUMO

Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel's salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.

5.
Food Res Int ; 157: 111399, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761653

RESUMO

Helichrysum italicum (H. italicum) is a halophyte shrub with bright yellow flowers with a strong curry-like aroma. The essential oils of H. italicum have been used in the production of cosmetics and pharmaceuticals, due to their antiallergic and anti-inflammatory properties. In the agri-food sector, H. italicum flowers can be used for seasoning and flavoring food, and as natural food preservatives. Here, we report on the composition, bioactive compounds, and nutritive value of H. italicum flowers. Flowers were mainly composed of carbohydrates (>80 % dry weight), followed by minerals (6.31 ± 0.95 % dw), protein (5.44 ± 0.35 % dw), and lipids (3.59 % ± 0.53 % dw). High percentages of Fe, Zn, Ca, and K were found in the flower material, along with a high content in antioxidants, polyphenols, and carotenoids, as corroborated by the nuclear magnetic resonance (NMR) data. Flowers were mainly composed of saturated fatty acids (SFAs) (54.50 ± 0.95 % of total FA), followed by polyunsaturated fatty acids (PUFAs) (37.73 ± 1.25 % of total FA) and monounsaturated fatty acids (MUFAs) (7.77 ± 0.34 %), as detected by gas chromatography mass spectrometry (GC-MS). The omega-6 PUFA linoleic acid (22.55 ± 0.76 % of total FA) was the most abundant fatty acid found. Flower extracts showed antimicrobial activity against Saccharomyces cerevisiae and Komagataella phaffii, as well as against Gram-negative (Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus) bacteria. H. italicum flower material was nontoxic to human intestinal Caco-2 model cells at concentrations up to 1.0 % w/v.


Assuntos
Helichrysum , Óleos Voláteis , Células CACO-2 , Flores/química , Helichrysum/química , Humanos , Valor Nutritivo , Óleos Voláteis/química
6.
Molecules ; 27(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335351

RESUMO

Four stereoisomeric monoether derivatives, based on axially chiral (R)- or (S)-BINOL bearing a chiral (+)- or (-)-neomenthyloxy group were synthesised and fully characterised by NMR spectroscopy and X-ray crystallography. The respective tris-monophosphites were thereof prepared and fully characterised. The coordination ability of the new bulky phosphites with Rh(CO)2(acac), was attested by 31P NMR, which presented a doublet in the range of δ = 120 ppm, with a 1J(103Rh-31P) coupling constant of 290 Hz. The new tris-binaphthyl phosphite ligands were further characterised by DFT computational methods, which allowed us to calculate an electronic (CEP) parameter of 2083.2 cm-1 and an extremely large cone angle of 345°, decreasing to 265° upon coordination with a metal atom. Furthermore, the monophosphites were applied as ligands in rhodium-catalysed hydroformylation of styrene, leading to complete conversions in 4 h, 100% chemoselectivity for aldehydes and up to 98% iso-regioselectivity. The Rh(I)/phosphite catalytic system was also highly active and selective in the hydroformylation of disubstituted olefins, including (E)-prop-1-en-1-ylbenzene and prop-1-en-2-ylbenzene.

7.
Food Chem ; 345: 128732, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33341558

RESUMO

Edible wild plants are part of the ethnobotanical and gastronomic heritage of different geographical areas. Corema album (L.) D. Don is an endemic species of the dune systems of the Atlantic coast of the Iberian Peninsula. The aerial parts of Corema album are a source of nutrients and antioxidants. The Corema album white berry (Portuguese crowberry) is rich in calcium, iron, and zinc. The plant also shows high phenolic content and antioxidant capacity associated with the leaves, fruit, and flowers. The presence of organic acids, namely phenolic acids, such as hydroxycinnamic acids, and long chain polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 has also been confirmed. Toxicity studies evaluated by cell viability tests with human intestinal epithelium model cells (Caco-2) have shown that, at low concentrations, plant extracts may present beneficial effects.


Assuntos
Ericaceae/química , Hidroxibenzoatos/análise , Minerais/análise , Plantas Comestíveis/química , Antioxidantes/análise , Células CACO-2 , Frutas/química , Humanos , Extratos Vegetais/toxicidade , Folhas de Planta/química
8.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008816

RESUMO

Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies-amyloidoses-are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.


Assuntos
Amiloide/metabolismo , Pré-Albumina/química , Agregados Proteicos , Amiloide/ultraestrutura , Dicroísmo Circular , Doxiciclina/química , Doxiciclina/farmacologia , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Pré-Albumina/ultraestrutura , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
9.
Biochim Biophys Acta Biomembr ; 1862(9): 183314, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304757

RESUMO

α-Synuclein (αsyn) is a cytosolic intrinsically disordered protein (IDP) known to fold into an α-helical structure when binding to membrane lipids, decreasing protein aggregation. Model membrane enable elucidation of factors critically affecting protein folding/aggregation, mostly using either small unilamellar vesicles (SUVs) or nanodiscs surrounded by membrane scaffold proteins (MSPs). Yet SUVs are mechanically strained, while MSP nanodiscs are expensive. To test the impact of lipid particle size on α-syn structuring, while overcoming the limitations associated with the lipid particles used so far, we compared the effects of large unilamellar vesicles (LUVs) and lipid-bilayer nanodiscs encapsulated by diisobutylene/maleic acid copolymer (DIBMA) on αsyn secondary-structure formation, using human-, elephant- and whale -αsyn. Our results confirm that negatively charged lipids induce αsyn folding in h-αsyn and e-αsyn but not in w-αsyn. When a mixture of zwitterionic and negatively charged lipids was used, no increase in the secondary structure was detected at 45 °C. Further, our results show that DIBMA/lipid particles (DIBMALPs) are highly suitable nanoscale membrane mimics for studying αsyn secondary-structure formation and aggregation, as folding was essentially independent of the lipid/protein ratio, in contrast with what we observed for LUVs having the same lipid compositions. This study reveals a new and promising application of polymer-encapsulated lipid-bilayer nanodiscs, due to their excellent efficiency in structuring disordered proteins such as αsyn into nontoxic α-helical structures. This will contribute to the unravelling and modelling aspects concerning protein-lipid interactions and α-helix formation by αsyn, paramount to the proposal of new methods to avoid protein aggregation and disease.


Assuntos
Lipídeos de Membrana/química , Polímeros/farmacologia , Lipossomas Unilamelares/química , alfa-Sinucleína/química , Alcenos/química , Alcenos/farmacologia , Humanos , Proteínas Intrinsicamente Desordenadas/química , Bicamadas Lipídicas/química , Maleatos/química , Maleatos/farmacologia , Proteínas de Membrana/química , Polímeros/química , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
10.
J Interv Card Electrophysiol ; 53(2): 217-223, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29732527

RESUMO

PURPOSE: The aim of the present study is to evaluate the feasibility and safety of SVC electrical isolation by LB ablation in patients with atrial fibrillation (AF) referred for pulmonary vein isolation (PVI). METHODS: Electrical disconnection of the SVC was attempted by LB in 13 consecutive patients (59 ± 10.5 years, 11 male) with AF following PVI. PVI was successfully achieved by standard LB in all before attempting SVC isolation. RESULTS: A laser beam was delivered with 6.3 ± 2.3 W and 8.4 ± 2.7 W (P = 0.001) during 5.38 ± 2.4 min and 9.75 ± 1.6 min (P = 0.024) to achieve SVC and PV, respectively. Isolation of the SVC by LB was accomplished in 8 patients (61%) without complications. Phrenic nerve palsy developed in 3 patients (23%), which resulted in early procedure termination before isolation. Technical problems or interposition of a pacemaker lead to prevented SVC isolation in the remaining 2 patients. After a mean follow-up of 19 ± 3 months, no patient recovered from phrenic nerve palsy. CONCLUSIONS: SVC isolation by LB is feasible but associated with a high risk of phrenic nerve palsy. Limitation of laser delivery time and power appears insufficient to prevent this complication.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Terapia a Laser/métodos , Veia Cava Superior/cirurgia , Adulto , Idoso , Fibrilação Atrial/diagnóstico por imagem , Estudos de Coortes , Eletrocardiografia/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Prognóstico , Veias Pulmonares/cirurgia , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Resultado do Tratamento
11.
J Phys Chem B ; 122(14): 3790-3800, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29558133

RESUMO

The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol-1, 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol-1, ∼1.7 µs). The essential role of two discrete side chain interactions, a salt bridge, and in particular a single cation-π interaction in the folding dynamics of a naturally occurring α-helix peptide is uniquely revealed by these data.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Dobramento de Proteína , Ribonuclease Pancreático/química , Animais , Bovinos , Estrutura Secundária de Proteína , Desdobramento de Proteína , Ribonuclease Pancreático/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 169: 175-81, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27376757

RESUMO

Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka~4.34×10(3)M(-1)) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of (1)H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues.


Assuntos
Benzaldeídos/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Benzaldeídos/química , Sítios de Ligação , Bovinos , Entropia , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Soroalbumina Bovina/química , Espectrometria de Fluorescência
13.
Rev. urug. cardiol ; 31(1): 118-127, abr. 2016. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-789149

RESUMO

La fibrilación auricular es la arritmia más común en la práctica clínica. La ablación se considera el tratamiento de elección (indicación clase I) en los pacientes sintomáticos con recurrencias a pesar del tratamiento con fármacos antiarrítmicos. El presente artículo revisa tanto los mecanismos propuestos de esta arritmia como las diferentes metodologías de ablación con catéter y sus indicaciones.


Summary Atrial fibrillation is the most common arrhythmia in clinical practice. Catheter ablation is the treatment of choice (Class I indication) for symptomatic patients with recurrences despite antiarrhythmic drugs. The present article reviews the proposed mechanisms of this arrhythmia and the different ablation methods and indications.

14.
Phys Chem Chem Phys ; 17(11): 7255-63, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25694367

RESUMO

The aggregation of proteins into insoluble amyloid fibrils is the hallmark of many, highly debilitating, human pathologies such as Alzheimer's or Parkinson's disease. Transthyretin (TTR) is a homotetrameric protein implicated in several amyloidoses like Senile Systemic Amyloidosis (SSA), Familial Amyloid Polyneuropathy (FAP), Familial Amyloid Cardiomyopathy (FAC), and the rare Central Nervous System selective Amyloidosis (CNSA). In this work, we have investigated the kinetics of TTR aggregation into amyloid fibrils produced by the addition of NaCl to acid-unfolded TTR monomers and we propose a mathematically simple kinetic mechanism to analyse the aggregation kinetics of TTR. We have conducted circular dichroism, intrinsic tryptophan fluorescence and thioflavin-T emission experiments to follow the conformational changes accompanying amyloid formation at different TTR concentrations. Kinetic traces were adjusted to a two-step model with the first step being second-order and the second being unimolecular. The molecular species present in the pathway of TTR oligomerization were characterized by size exclusion chromatography coupled to multi-angle light scattering and by transmission electron microscopy. The results show the transient accumulation of oligomers composed of 6 to 10 monomers in agreement with reports suggesting that these oligomers may be the causative agent of cell toxicity. The results obtained may prove to be useful in understanding the mode of action of different compounds in preventing fibril formation and, therefore, in designing new drugs against TTR amyloidosis.


Assuntos
Amiloide/química , Modelos Moleculares , Pré-Albumina/química , Multimerização Proteica , Humanos , Ácido Clorídrico/farmacologia , Cinética , Estrutura Secundária de Proteína , Desdobramento de Proteína/efeitos dos fármacos
15.
Biomed Res Int ; 2013: 638085, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841082

RESUMO

The (13)C-isotopomer enrichment of hepatic cytosolic acetyl-CoA of overnight-fed mice whose drinking water was supplemented with [U-(13)C]fructose, and [1-(13)C]glucose and p-amino benzoic acid (PABA) was quantified by (13)C NMR analysis of urinary N-acetyl-PABA. Four mice were given normal chow plus drinking water supplemented with 5% [1-(13)C]glucose, 2.5% [U-(13)C]fructose, and 2.5% fructose (Solution 1) overnight. Four were given chow and water containing 17.5% [1-(13)C]glucose, 8.75% [U-(13)C]fructose and 8.75% fructose (Solution 2). PABA (0.25%) was present in both studies. Urinary N-acetyl-PABA was analyzed by (13)C NMR. In addition to [2-(13)C]- and [1,2-(13)C]acetyl isotopomers from catabolism of [U-(13)C]fructose and [1-(13)C]glucose to acetyl-CoA, [1-(13)C]acetyl was also found indicating pyruvate recycling activity. This precluded precise estimates of [1-(13)C]glucose contribution to acetyl-CoA while that of [U-(13)C]fructose was unaffected. The fructose contribution to acetyl-CoA from Solutions 1 and 2 was 4.0 ± 0.4% and 10.6 ± 0.6%, respectively, indicating that it contributed to a minor fraction of lipogenic acetyl-CoA under these conditions.


Assuntos
Acetilcoenzima A/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Acetilcoenzima A/química , Animais , Glicemia/metabolismo , Radioisótopos de Carbono/química , Citosol/metabolismo , Ácidos Graxos/metabolismo , Frutose/administração & dosagem , Glucose/administração & dosagem , Camundongos
16.
Int J Biol Macromol ; 50(2): 323-30, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22212471

RESUMO

Conformational and functional changes of cardosin A, an aspartic protease of vegetal origin, in the presence of 2,2,2-trifluoroethanol (TFE), were assessed. TFE induced alterations of cardosin activity and conformation that differed with the solvent concentration. MD simulations showed that there are significant local alterations in protein flexibility and TFE molecules were found to replace several hydration molecules in the active site of the enzyme. This may explain some of the activity loss observed in the presence of TFE, especially at low TFE concentrations, as well as the recovery of enzyme activity upon aqueous dilution, indicating the release of the TFE molecules from the active site.


Assuntos
Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Trifluoretanol/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...