Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551666

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.

2.
Clin Cancer Res ; 28(6): 1203-1216, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34980600

RESUMO

PURPOSE: Cetuximab is an EGFR-targeted therapy approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, about 60% of these patients show innate resistance to cetuximab. To increase cetuximab efficacy, it is crucial to successfully identify responder patients, as well as to develop new therapeutic approaches to overcome cetuximab resistance. EXPERIMENTAL DESIGN: We evaluated the value of EGFR effector phospholipase C gamma 1 (PLCγ1) in predicting cetuximab responses, by analyzing progression-free survival (PFS) of a multicentric retrospective cohort of 94 treated patients with mCRC (log-rank test and Cox regression model). Furthermore, we used in vitro and zebrafish xenotransplant models to identify and target the mechanism behind PLCγ1-mediated resistance to cetuximab. RESULTS: In this study, levels of PLCγ1 were found increased in RAS WT tumors and were able to predict cetuximab responses in clinical samples and in vitro and in vivo models. Mechanistically, PLCγ1 expression was found to bypass cetuximab-dependent EGFR inhibition by activating ERK and AKT pathways. This novel resistance mechanism involves a noncatalytic role of PLCγ1 SH2 tandem domains in the propagation of downstream signaling via SH2-containing protein tyrosine phosphatase 2 (SHP2). Accordingly, SHP2 inhibition sensitizes PLCγ1-resistant cells to cetuximab. CONCLUSIONS: Our discoveries reveal the potential of PLCγ1 as a predictive biomarker for cetuximab responses and suggest an alternative therapeutic approach to circumvent PLCγ1-mediated resistance to cetuximab in patients with RAS WT mCRC. In this way, this work contributes to the development of novel strategies in the medical management and treatment of patients with mCRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Neoplasias Retais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB/genética , Humanos , Mutação , Fosfolipase C gama/genética , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Retais/tratamento farmacológico , Estudos Retrospectivos , Peixe-Zebra
3.
EMBO Mol Med ; 13(11): e13714, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661368

RESUMO

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.


Assuntos
COVID-19 , Biomarcadores , Flores , Humanos , Pandemias , Curva ROC , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
4.
Oncotarget ; 11(19): 1714-1728, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477461

RESUMO

The role of RANKL-RANK pathway in progesterone-driven mammary carcinogenesis and triple negative breast cancer tumorigenesis has been well characterized. However, and despite evidences of the existence of RANK-positive hormone receptor (HR)-positive breast tumors, the implication of RANK expression in HR-positive breast cancers has not been addressed before. Here, we report that RANK pathway affects the expression of cell cycle regulators and decreases sensitivity to fulvestrant of estrogen receptor (ER)-positive (ER+)/HER2- breast cancer cells, MCF-7 and T47D. Moreover, RANK overexpressing cells had a staminal and mesenchymal phenotype, with decreased proliferation rate and decreased susceptibility to chemotherapy, but were more invasive in vivo. In silico analysis of the transcriptome of human breast tumors, confirmed the association between RANK expression and stem cell and mesenchymal markers in ER+HER2- tumors. Importantly, exposure of ER+HER2- cells to continuous RANK pathway activation by exogenous RANKL, in vitro and in vivo, induced a negative feedback effect, independent of RANK levels, leading to the downregulation of HR and increased resistance to hormone therapy. These results suggest that ER+HER2- RANK-positive cells may constitute an important reservoir of slow cycling, therapy-resistance cancer cells; and that RANK pathway activation is deleterious in all ER+HER2- breast cancer cells, independently of RANK levels.

5.
Adv Exp Med Biol ; 1110: 113-131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30623369

RESUMO

The development of monoclonal antibodies (mAbs) cetuximab and panitumumab, which target the transmembrane protein epidermal growth factor receptor (EGFR), mark a major step forward in the treatment of metastatic colorectal cancer (mCRC). However, this therapeutic progress proved to be effective only in a very restricted subset of patients. Although several mechanisms of resistance, both primary and acquired, have been identified, the only established predictive tumour biomarker for the treatment of mCRC patients is the RAS mutational status. RAS activating mutations predict a lack of response to these therapies while low levels of primary resistance characterize RAS wild type (WT) patients (only about 15%). However, even WT patients that initially respond to anti-EGFR therapy, eventually undergo tumour progression. In this context, there is still more to be done in the search for effective predictive markers with therapeutic applicability. In this chapter, we provide an overview on the mechanisms that contribute to resistance to EGFR-targeted therapy and highlight what is still missing in our understanding of these molecular mechanisms and approaches to overcome them.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Terapia de Alvo Molecular , Cetuximab , Receptores ErbB/antagonistas & inibidores , Humanos , Mutação , Metástase Neoplásica , Panitumumabe , Proteínas Proto-Oncogênicas p21(ras)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...