Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 185: 106431, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984489

RESUMO

Chronodisruption, commonly displayed by people living with obesity (PLO), is linked to colonic microbiota dysbiosis, and may increase the risk of many chronic non-communicable diseases, whereas dietary interventions-called chrononutrition may mitigate it. We evaluated the in vitro effects of spent coffee grounds (SCG), and their antioxidant dietary fiber (SCG-DF) on the colonic microbiota of an obese donor displaying dysbiosis and chronodisruption. Basal microbiota pattern was associated with an increased risk of non-communicable chronic diseases. Both samples decrease species richness and increase microbiota diversity (p < 0.05; Chao and Shannon index, respectively), positively enhancing Firmicutes/Bacteroidetes index (SCG, p < 0.04; SCG-DF, p < 0.02). SCG and SCG-DF modulated the microbiota, but SCG-DF induced greater changes, significantly increasing. p_Actonobacterias (SCG p < 0.04; SCG-DF, p < 0.02), and reducing g_Alistipes; s_putredinis, g_Prevotella;s_copri. The highest increase was displayed by p_Proteobacteria (f_Desulfovibrionaceae and f_Alcanigenaceae, p < 0.05), while g_Haemophilus; s_parainfluenzae decreased (p < 0.05). However, neither SCG nor SCG-DF modulated g_Alistipes (evening-type colonic microbial marker) beneficially. SCG and SCG-DF reduced (p < 0.05) g_Lachnospira, a microbial evening-type marker, among other microbial populations, of an obese donor displaying chronodisruption and dysbiosis. SCG and SCG-DF displayed a prebiotic effect with the potential to mitigate diseases linked to chronodisruption.


Assuntos
Antioxidantes , Café , Humanos , Disbiose , Fibras na Dieta , Obesidade
2.
Endokrynol Pol ; 73(5): 846-855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971931

RESUMO

INTRODUCTION: The aim of this is study was to analyse the expression of miR-193b, miR-378, miR-Let7-d, and miR-222 in human visceral adipose tissue (VAT), as well as their association with obesity, insulin resistance (IR), and their role in the regulation of genes controlling adipose tissue homeostasis, including adipocytokines, the phosphatase and tension homologue (PTEN), and tumour protein 53 (p53). MATERIAL AND METHODS: VAT was obtained from normal-weight (NW), overweight, and obese (OW/OB) subjects with and without IR. Stem-loop RT-qPCR was used to evaluate miRNA expression levels. miRTarBase 4.0, miRWalk, and DIANA-TarBase v8 were used for prediction of validated target gene of the miRNA analysed. A qPCR was used to evaluate PTEN, p53, leptin (LEP), and adiponectin (ADIPOQ) mRNA. RESULTS: miR-222 was lower in IR subjects, and miR-222 and miR-378 negatively correlated with HOMA-IR. PTEN and p53 are miR-222 direct targets according to databases. mRNA expression of PTEN and p53 was lower in OW/OB subjects with and without IR, compared to NW group and its levels positively associated with miR-222. Additionally, p53 and PTEN are positively associated with serum leptin levels. On the other hand, miR-193b and miR-378 negatively correlated with serum leptin but not with mRNA levels. Moreover, miR-Let-7d negatively correlated with serum adiponectin but not with adiponectin mRNA levels. CONCLUSIONS: Lower miR-222 levels are associated with IR, and PTEN and p53 expression; the implication of these genes in adipose tissue homeostasis needs more research.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Leptina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistência à Insulina/genética , Adiponectina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Intra-Abdominal/metabolismo , Tecido Adiposo/metabolismo , Obesidade , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
3.
Endokrynol Pol ; 72(1): 73-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749820

RESUMO

MicroRNAs (miRNAs) are part of the epigenetic mechanisms that regulate gene expression at a post-transcriptional level. This review describes some miRNAs whose expression is modified in obesity and that may be involved in the development of insulin resistance. The metabolic alterations associated with obesity are due to an adipose tissue dysfunction. miRNAs are a mechanism that regulates gene expression, one miRNA can regulate the expression up to a thousand genes, and at the same time one gene can be regulated by several miRNAs; moreover, miRNA expression is tissue specific. Obesity leads to a dysregulation of miRNA expression in adipose tissue, and changes in miRNA expression relate to changes in gene expression related to the development of insulin resistance. However, because miRNA can be exported to the extracellular medium through exosomes, proteins, and lipoproteins, miRNA can be found in extracellular fluids like blood, urine, saliva, and cerebrospinal fluid. Considering the above, miRNA have been proposed as biological markers of different diseases, and also as potential therapeutic targets.


Assuntos
Resistência à Insulina , Insulina/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Doenças Metabólicas/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171770

RESUMO

Phosphate (Pi) is a pivotal nutrient that constraints plant development and productivity in natural ecosystems. Land colonization by plants, more than 470 million years ago, evolved adaptive mechanisms to conquer Pi-scarce environments. However, little is known about the molecular basis underlying such adaptations at early branches of plant phylogeny. To shed light on how early divergent plants respond to Pi limitation, we analyzed the morpho-physiological and transcriptional dynamics of Marchantia polymorpha upon Pi starvation. Our phylogenomic analysis highlights some gene networks present since the Chlorophytes and others established in the Streptophytes (e.g., PHR1-SPX1 and STOP1-ALMT1, respectively). At the morpho-physiological level, the response is characterized by the induction of phosphatase activity, media acidification, accumulation of auronidins, reduction of internal Pi concentration, and developmental modifications of rhizoids. The transcriptional response involves the induction of MpPHR1, Pi transporters, lipid turnover enzymes, and MpMYB14, which is an essential transcription factor for auronidins biosynthesis. MpSTOP2 up-regulation correlates with expression changes in genes related to organic acid biosynthesis and transport, suggesting a preference for citrate exudation. An analysis of MpPHR1 binding sequences (P1BS) shows an enrichment of this cis regulatory element in differentially expressed genes. Our study unravels the strategies, at diverse levels of organization, exerted by M. polymorpha to cope with low Pi availability.


Assuntos
Marchantia/genética , Marchantia/metabolismo , Fosfatos/metabolismo , Ecossistema , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Hepatófitas/metabolismo , Filogenia , Fatores de Transcrição/metabolismo
5.
Pathog Glob Health ; 114(7): 393-404, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32924885

RESUMO

Tuberculosis control in developing regions with apparent low incidence, like the low-income Mexican state of Michoacán, with mean annual incidence rates below 10/100,000 inhabitants, requires knowledge of the actual behavior of the disease. This can be determined using an epidemiological profile at sub-regional level, allowing disclosure of the clinical and social factors that may be hampering efforts to control tuberculosis. In this work, a detailed epidemiological profile was outlined using data of all new monthly cases registered in the National System of Epidemiological Surveillance Database for Michoacán municipalities from 2000 to 2012. Cases were grouped by gender and age, and sociodemographic data were obtained both from the National Institute of Statistics and Geography and from the United Nations Development Programme. Correlations were calculated by Chi-square, Mann-Whitney U, and Kruskal-Wallis H tests. We observed no statistically significant differences between notification rates for the years 2000, 2005 and 2010 (χ2 = 0.222, p = 0.895). The percentage of cases is similar between all age groups older than 15, while some regions had low notification rates but high proportions of pediatric cases. Higher proportions of cases of extrapulmonary tuberculosis were observed in municipalities in northern Michoacán. No correlation was found between municipal Human Development Index values and municipal notification rates. Michoacán is undergoing an epidemiological transition with three regions having different epidemiological profiles and particular needs for effective prevention and containment of tuberculosis. Our work shows the importance of the spatial scale of epidemiological profiles for determining specific regional needs of surveillance and containment.


Assuntos
Tuberculose , Cidades , Humanos , Incidência , México/epidemiologia , Tuberculose/epidemiologia
6.
Physiol Mol Biol Plants ; 26(1): 3-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158116

RESUMO

Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 µM and 50, 150 and 300 µM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.

7.
F1000Res ; 9: 501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33976872

RESUMO

Background: In spore-forming bacteria, the molecular mechanisms of accumulation of transfer RNA (tRNA) during sporulation must be a priority as tRNAs play an essential role in protein synthesis during spore germination and outgrowth. However, tRNA processing has not been extensively studied in these conditions, and knowledge of these mechanisms is important to understand long-term stress survival.    Methods:To gain further insight into tRNA processing during spore germination and outgrowth, the expression of the single copy tRNA Cys gene was analyzed in the presence and absence of 1.2 M NaCl in Bacillus subtilis using RNA-Seq data obtained from the Gene Expression Omnibus (GEO) database. The CLC Genomics work bench 12.0.2 (CLC Bio, Aarhus, Denmark, https://www.qiagenbioinformatics.com/) was used to analyze reads from the tRNA Cys gene.  Results:The results show that spores store different populations of tRNA Cys-related molecules.  One such population, representing 60% of total tRNA Cys, was composed of tRNA Cys fragments.  Half of these fragments (3´-tRF) possessed CC, CCA or incorrect additions at the 3´end. tRNA Cys with correct CCA addition at the 3´end represented 23% of total tRNA Cys, while with CC addition represented 9% of the total and with incorrect addition represented 7%. While an accumulation of tRNA Cys precursors was induced by upregulation of the rrnD operon under the control of  σ A -dependent promoters under both conditions investigated, salt stress produced only a modest effect on tRNA Cys expression and the accumulation of tRNA Cys related species. Conclusions:The results demonstrate that tRNA Cys molecules resident in spores undergo dynamic processing to produce functional molecules that may play an essential role during protein synthesis.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/genética , RNA , RNA de Transferência/genética , Estresse Salino , Análise de Sequência de RNA , Esporos Bacterianos/genética
8.
Mar Drugs ; 17(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277227

RESUMO

Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.


Assuntos
Antozoários/metabolismo , Proteoma/metabolismo , Animais , Região do Caribe , Recifes de Corais , Ecossistema , Monitoramento Ambiental/métodos , Hidrozoários/metabolismo , Fosfolipases A2/metabolismo , Proteômica/métodos
10.
PeerJ ; 7: e6593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918755

RESUMO

Reef-forming cnidarians are extremely susceptible to the "bleaching" phenomenon caused by global warming. The effect of elevated seawater temperature has been extensively studied on Anthozoans; however, to date the impact of thermal stress on the expression of genes and proteins in Hydrozoan species has not been investigated. The present study aimed to determine the differential proteomic profile of Millepora alcicornis, which inhabits the Mexican Caribbean, in response to the El Niño-Southern Oscillation 2015-2016. Additionally, the cytolytic activity of the soluble proteomes obtained from normal and bleached M. alcicornis was assessed. Bleached specimens showed decreased symbiont's density and chlorophyll a and c2 levels. After bleaching, we observed a differential expression of 17 key proteins, tentatively identified as related to exocytosis, calcium homeostasis, cytoskeletal organization, and potential toxins, including a metalloprotease, a phospholipase A2 (PLA2), and an actitoxin. Although, some of the differentially expressed proteins included potential toxins, the hemolytic, PLA2, and proteolytic activities elicited by the soluble proteomes from bleached and normal specimens were not significantly different. The present study provides heretofore-unknown evidence that thermal stress produces a differential expression of proteins involved in essential cellular processes of Hydrozoan species. Even though our results showed an over-expression of some potential toxin-related proteins, the cytolytic effect (as assessed by hemolytic, PLA2, and caseinolytic activities) was not increased in bleached M. alcicornis, which suggests that the cytolysis is mainly produced by toxins whose expression was not affected by temperature stress. These findings allow hypothesizing that this hydrocoral is able to prey heterotrophically when suffering from moderate bleaching, giving it a better chance to withstand the effects of high temperature.

11.
J Biotechnol ; 306S: 100013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34112377

RESUMO

Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) has been shown to specifically bind and induce cell death of different types of cancer cells and also has exhibited an effect on early colon tumorigenesis. However, the development of a pharmaceutical formula is not possible yet because the production process is expensive and slow and provides low yields. Therefore, the purpose of the present work was to develop a strategy to produce one bioactive lectin by rhizosecretion through root exudates on genetically modified plants. Amplification of Tepary bean transcripts was performed using degenerate primers, and the products obtained were sequenced. Multiple alignments of sequences led to elucidating one of the lectins present in TBLF. Its coding sequence was flanked by an N-terminal secretion signal peptide and a 6xHis-tail. This construction was introduced into P. acutifolius plants using Agrobacterium tumefaciens to subsequently carry out the in vitro growth of the plants. When roots grew, plants were transferred to hydroponic conditions and root exudates were analyzed. Results showed the presence of a glycosylated cisgenic lectin with biological activity, confirming that the strategy followed provides an alternative for the synthetic production and purification of this lectin.

12.
Genome Announc ; 6(25)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930042

RESUMO

Mycobacterium tuberculosis strain MYC004 was isolated from a Mexican patient with tuberculous meningitis, the most aggressive form of tuberculosis. The draft genome sequence is the first of a meningeal strain of M. tuberculosis reported from Latin America and consists of 4,411,530 bp, including 4,251 protein-encoding genes.

13.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773615

RESUMO

Bee pollen is a highly nutritive natural foodstuff. Because of its use as a comestible, the association of bacteria with bee pollen is commercially and biologically important. We report here the bacterial diversity of seven bee pollen samples (five from Europe, one from Chile, and one from Mexico) based on 16S rRNA gene amplicon metagenome sequencing.

14.
Dev Biol ; 442(1): 28-39, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705332

RESUMO

In plants, the best characterized plant regeneration process is de novo organogenesis. This type of regeneration is characterized by the formation of a multicellular structure called callus. Calli are induced via phytohormone treatment of plant sections. The callus formation in plants like Agave species with Crassulacean Acid Metabolism (CAM) is poorly studied. In this study, we induced callus formation from Agave salmiana leaves and describe cell arrangement in this tissue. Moreover, we determined and analyzed the transcriptional program of calli, as well as those of differentiated root and leaf tissues, by using RNA-seq. We were able to reconstruct 170,844 transcripts of which 40,644 have a full Open Reading Frame (ORF). The global profile obtained by Next Generation Sequencing (NGS) reveals that several callus-enriched protein coding transcripts are orthologs of previously reported factors highly expressed in Arabidopsis calli. At least 62 genes were differentially expressed in Agave calli, 50 of which were up-regulated. Several of these are actively involved in the perception of, and response to, auxin and cytokinin. Not only are these the first results for the A. salmiana callus, but they provide novel data from roots and leaves of this Agave species, one of the largest non-tree plants in nature.


Assuntos
Agave/genética , Organogênese Vegetal/genética , Regeneração/genética , Crassulaceae/genética , Citocininas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/fisiologia , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transcriptoma/genética
15.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291975

RESUMO

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Assuntos
Ambystoma mexicanum/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Regeneração/genética , Transcrição Gênica , Transcriptoma , Ambystoma mexicanum/fisiologia , Animais , Feminino , Biblioteca Gênica , Ontologia Genética , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Especificidade de Órgãos , Análise de Componente Principal , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Especificidade da Espécie
16.
Stem Cells Dev ; 25(14): 1035-49, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224014

RESUMO

Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.


Assuntos
Reprogramação Celular/genética , MicroRNAs/metabolismo , Animais , Diferenciação Celular/genética , Plasticidade Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia
17.
Biomed Res Int ; 2015: 480386, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509157

RESUMO

Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.


Assuntos
Bactérias/genética , Metagenômica , Microbiologia da Água , Animais , Aquicultura , Biologia Computacional , Hidroponia , Metabolômica/métodos , Proteômica/métodos , RNA Ribossômico 16S/genética , Água
18.
Front Plant Sci ; 6: 99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784917

RESUMO

microRNAs are a class of non-coding small RNAs (sRNAs) that are important regulators of gene expression at the post-transcriptional level by mRNA cleavage or translation inhibition. Another class of sRNAs are siRNAs, which also regulate gene expression but by causing DNA methylation. This epigenetic regulatory role has been observed for some miRNAs as well. The use of sRNAs allows the development of biotechnological applications in plants. To develop these types of applications, and to better understand the natural roles they play, it is important to be able to detect and to localize these sRNAs at the plant tissue level. Sometimes, in crop plants this can be challenging. Therefore, we developed a tissue printing hybridization protocol for easy and efficient detection of sRNAs and demonstrate this by the analysis of the spatio-temporal expression patterns of the miRNAs miR159 and miR164 in fruits of various crop plants. Moreover, we show the possibility to also detect the expression of miRNAs in fruit juice using a dot blot hybridization approach.

19.
Planta ; 241(2): 435-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25366556

RESUMO

miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.


Assuntos
Frutas/genética , MicroRNAs/genética , Opuntia/genética , Regulação da Expressão Gênica de Plantas
20.
Genome Announc ; 2(6)2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25395645

RESUMO

We report here the first draft assembly for the genome of Acinetobacter idrijaensis strain MII, isolated from the Idrija mercury mine area (Slovenia). This strain shows a strikingly high tolerance to mercury, and the genome sequence shows genes involved in the mechanisms for heavy metal tolerance pathways and multidrug efflux pumps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...