Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 8(1): 447, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335090

RESUMO

Significant evidence points to Strip2 being a key regulator of the differentiation processes of pluripotent embryonic stem cells. However, Strip2 mediated epigenetic regulation of embryonic differentiation and development is quite unknown. Here, we identified several interaction partners of Strip2, importantly the co-repressor molecular protein complex nucleosome remodeling deacetylase/Tripartite motif-containing 28/Histone deacetylases/Histone-lysine N-methyltransferase SETDB1 (NuRD/TRIM28/HDACs/SETDB1) histone methyltransferase, which is primarily involved in regulation of the pluripotency of embryonic stem cells and its differentiation. The complex is normally activated by binding of Krueppel-associated box zinc-finger proteins (KRAB-ZFPs) to specific DNA motifs, causing methylation of H3 to Lysin-9 residues (H3K9). Our data showed that Strip2 binds to a DNA motif (20 base pairs), like the KRAB-ZFPs. We establish that Strip2 is an epigenetic regulator of pluripotency and differentiation by modulating DNA KRAB-ZFPs as well as the NuRD/TRIM28/HDACs/SETDB1 histone methyltransferase complex.

2.
Nat Commun ; 13(1): 3263, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672304

RESUMO

Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFß-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFß pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFß pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFß-driven response during mammalian neurogenesis.


Assuntos
Células-Tronco Neurais , Fator de Crescimento Transformador beta , Animais , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Genoma , Mamíferos/genética , Células-Tronco Neurais/metabolismo , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Nat Commun ; 12(1): 4344, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272393

RESUMO

Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Embrião de Galinha , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Ilhas de CpG , Células-Tronco Embrionárias/efeitos dos fármacos , Epigênese Genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camadas Germinativas/metabolismo , Homozigoto , Camundongos , Filogenia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/genética
4.
Nat Genet ; 53(7): 1036-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183853

RESUMO

CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.


Assuntos
Ilhas de CpG , Metilação de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Técnicas de Introdução de Genes , Camundongos , Regiões Promotoras Genéticas
5.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29438503

RESUMO

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos/genética , Neurogênese/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Animais , Sistemas CRISPR-Cas/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/genética
6.
Cell Stem Cell ; 20(5): 689-705.e9, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285903

RESUMO

Poised enhancers marked by H3K27me3 in pluripotent stem cells have been implicated in the establishment of somatic expression programs during embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Using CRISPR/Cas9 technology to engineer precise genetic deletions, we demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Interestingly, circularized chromosome conformation capture sequencing (4C-seq) shows that poised enhancers already establish physical interactions with their target genes in ESCs in a polycomb repressive complex 2 (PRC2)-dependent manner. Loss of PRC2 does not activate poised enhancers or induce their putative target genes in undifferentiated ESCs; however, loss of PRC2 in differentiating ESCs severely and specifically compromises the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates an unexpected function for polycomb proteins in facilitating neural induction by endowing major anterior neural loci with a permissive regulatory topology.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Camundongos , Complexo Repressor Polycomb 2/genética , Reação em Cadeia da Polimerase
7.
Cell Rep ; 17(11): 3062-3076, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974217

RESUMO

Cellular heterogeneity within embryonic and adult tissues is involved in multiple biological and pathological processes. Here, we present a simple epigenomic strategy that allows the functional dissection of cellular heterogeneity. By integrating H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) data, we demonstrate that the presence of broad H3K27me3 domains at transcriptionally active genes reflects the heterogeneous expression of major cell identity regulators. Using dorsoventral patterning of the spinal neural tube as a model, the proposed approach successfully identifies the majority of previously known dorsoventral patterning transcription factors with high sensitivity and precision. Moreover, poorly characterized patterning regulators can be similarly predicted, as shown for ZNF488, which confers p1/p2 neural progenitor identity. Finally, we show that, as our strategy is based on universal chromatin features, it can be used to functionally dissect cellular heterogeneity within various organisms and tissues, thus illustrating its potential applicability to a broad range of biological and pathological contexts.


Assuntos
Padronização Corporal/genética , Linhagem da Célula/genética , Epigenômica , Heterogeneidade Genética , Animais , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Análise de Sequência de RNA/métodos , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...