Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37232974

RESUMO

The interest in new materials with specific properties has increased because they are essential for the environmental and technological needs of our society. Among them, silica hybrid xerogels have emerged as promising candidates due to their simple preparation and tunability: when they are synthesised, depending on the organic precursor and its concentration, their properties can be modulated, and thus, it is possible to prepare materials with à la carte porosity and surface chemistry. This research aims to design two new series of silica hybrid xerogels by co-condensation of tetraethoxysilane (TEOS) with triethoxy(p-tolyl)silane (MPhTEOS) or 1,4-bis(triethoxysilyl)benzene (Ph(TEOS)2 and to determine their chemical and textural properties based on a variety of characterisation techniques (FT-IR, 29Si NMR, X-ray diffraction and N2, CO2 and water vapour adsorption, among others). The information gathered from these techniques reveals that depending on the organic precursor and its molar percentage, materials with different porosity, hydrophilicity and local order are obtained, evidencing the easy modulation of their properties. The ultimate goal of this study is to prepare materials suitable for a variety of applications, such as adsorbents for pollutants, catalysts, films for solar cells or coatings for optic fibre sensors.

2.
Langmuir ; 39(1): 211-219, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562662

RESUMO

Hybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol-gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Preparações de Ação Retardada , Dióxido de Silício/química , Ibuprofeno , Campos Magnéticos , Nanopartículas/química
3.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286178

RESUMO

The search for new materials with improved properties for advanced applications is, nowadays, one of the most relevant and booming fields for scientists due to the environmental and technological needs of our society. Within this demand, hybrid siliceous materials, made out of organic and inorganic species (ORMOSILs), have emerged as an alternative with endless chemical and textural possibilities by incorporating in their structure the properties of inorganic compounds (i.e., mechanical, thermal, and structural stability) in synergy with those of organic compounds (functionality and flexibility), and thus, bestowing the material with unique properties, which allow access to multiple applications. In this work, synthesis using the sol-gel method of a series of new hybrid materials prepared by the co-condensation of tetraethoxysilane (TEOS) and 4-chlorophenyltriethoxysilane (ClPhTEOS) in different molar ratios is described. The aim of the study is not only the preparation of new materials but also their characterization by means of different techniques (FT-IR, 29Si NMR, X-ray Diffraction, and N2/CO2 adsorption, among others) to obtain information on their chemical behavior and porous structure. Understanding how the chemical and textural properties of these materials are modulated with respect to the molar percentage of organic precursor will help to envisage their possible applications: From the most conventional such as catalysis, adsorption, or separation, to the most advanced in nanotechnology such as microelectronics, photoluminescence, non-linear optics, or sensorics.

4.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202735

RESUMO

The properties of hybrid silica xerogels obtained by the sol-gel method are highly dependent on the precursor and the synthesis conditions. This study examines the influence of organic substituents of the precursor on the sol-gel process and determines the structure of the final materials in xerogels containing tetraethyl orthosilicate (TEOS) and alkyltriethoxysilane or chloroalkyltriethoxysilane at different molar percentages (RTEOS and ClRTEOS, R = methyl [M], ethyl [E], or propyl [P]). The intermolecular forces exerted by the organic moiety and the chlorine atom of the precursors were elucidated by comparing the sol-gel process between alkyl and chloroalkyl series. The microstructure of the resulting xerogels was explored in a structural theoretical study using Fourier transformed infrared spectroscopy and deconvolution methods, revealing the distribution of (SiO)4 and (SiO)6 rings in the silicon matrix of the hybrid xerogels. The results demonstrate that the alkyl chain and the chlorine atom of the precursor in these materials determines their inductive and steric effects on the sol-gel process and, therefore, their gelation times. Furthermore, the distribution of (SiO)4 and (SiO)6 rings was found to be consistent with the data from the X-ray diffraction spectra, which confirm that the local periodicity associated with four-fold rings increases with higher percentage of precursor. Both the sol-gel process and the ordered domains formed determine the final structure of these hybrid materials and, therefore, their properties and potential applications.

5.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925564

RESUMO

Hybrid silica xerogels combine the properties of organic and inorganic components in the same material, making them highly promising and versatile candidates for multiple applications. They can be tailored for specific purposes through chemical modifications, and the consequent changes in their structures warrant in-depth investigation. We describe the synthesis of three new series of organochlorinated xerogels prepared by co-condensation of tetraethyl orthosilicate (TEOS) and chloroalkyltriethoxysilane (ClRTEOS; R = methyl [M], ethyl [E], or propyl [P]) at different molar ratios. The influence of the precursors on the morphological and textural properties of the xerogels was studied using 29Si NMR (Nuclear Magnetic Resonance), FTIR (Fourier-Transform Infrared Spectroscopy), N2, and CO2 adsorption, XRD (X-ray Diffraction), and FE-SEM (Field-Emission Scanning Electron Microscopy). The structure and morphology of these materials are closely related to the nature and amount of the precursor, and their microporosity increases proportionally to the molar percentage of ClRTEOS. In addition, the influence of the chlorine atom was investigated through comparison with their non-chlorinated analogues (RTEOS, R = M, E, or P) prepared in previous studies. The results showed that a smaller amount of precursor was needed to detect ordered domains (ladders and T8 cages) in the local structure. The possibility of coupling self-organization with tailored porosity opens the way to novel applications for this type of organically modified silicates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...