Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nutrition ; 116: 112198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717500

RESUMO

OBJECTIVES: Obesity is a multifactorial condition associated with metabolic alterations that can be aggravated during female aging. Calorie restriction via intermittent fasting (IF) diets may reduce body weight and therefore have the potential to decrease obesity and associated comorbidities, such as insulin resistance. This study investigated the effects of two IF protocols, alternate-day fasting (ADF) and time-restricted feeding (TRF) in middle-aged obese female rats. METHODS: Wistar rats (age 15 mo) were fed with standard chow or high-fat diet for 8 wk and then separated into the following groups (n = 5-8 each) for another 8 wk: control (received standard chow), obese (received high-fat diet), obese + ADF (24-h fasting protocol), and obese + TRF (14 h daily). RESULTS: At the end of the study, both IF protocols were able to reduce body weight and body mass index compared with the obese group. However, no changes were observed in adiposity and glucose homeostasis. We also found an increase in total leukocytes, lymphocytes, and monocytes in the TRF group and a higher number of platelets in the ADF group. Blood lipid profiles, including triglycerides and high-density lipoprotein, as well as liver stress responses, such as heat shock protein 70 and malondialdehyde, were not changed by IF. CONCLUSIONS: Although ADF and TRF protocols resulted in a reduction of body weight and body mass index, these dietary interventions did not promote health benefits, such as reducing blood lipid profile, adiposity, and insulin resistance. In addition, ADF and TRF increased inflammatory biomarkers, which may increase the risk of obesity-associated comorbidities.


Assuntos
Resistência à Insulina , Ratos , Feminino , Animais , Resistência à Insulina/fisiologia , Ratos Wistar , Obesidade , Jejum , Peso Corporal , Lipídeos
2.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37219940

RESUMO

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


Assuntos
Linfócitos B , Metabolismo dos Lipídeos , Glicosilação , Transporte Biológico , Anticorpos , Glucose
3.
Nutrients ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839353

RESUMO

Coffee is a popular and widely consumed beverage worldwide, with epidemiological studies showing reduced risk of cardiovascular disease, cancers and non-alcoholic fatty liver disease. However, few studies have investigated the health effects of the post-brewing coffee product, spent coffee grounds (SCG), from either hot- or cold-brew coffee. SCG from hot-brew coffee improved metabolic parameters in rats with diet-induced metabolic syndrome and improved gut microbiome in these rats and in humans; further, SCG reduced energy consumption in humans. SCG contains similar bioactive compounds as the beverage including caffeine, chlorogenic acids, trigonelline, polyphenols and melanoidins, with established health benefits and safety for human consumption. Further, SCG utilisation could reduce the estimated 6-8 million tonnes of waste each year worldwide from production of coffee as a beverage. In this article, we explore SCG as a major by-product of coffee production and consumption, together with the potential economic impacts of health and non-health applications of SCG. The known bioactive compounds present in hot- and cold-brew coffee and SCG show potential effects in cardiovascular disease, cancer, liver disease and metabolic disorders. Based on these potential health benefits of SCG, it is expected that foods including SCG may moderate chronic human disease while reducing the environmental impact of waste otherwise dumped in landfill.


Assuntos
Doenças Cardiovasculares , Café , Ratos , Humanos , Animais , Alimento Funcional , Cafeína/análise
4.
Proc Nutr Soc ; 82(1): 22-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285520

RESUMO

Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo
5.
Mol Cell Endocrinol ; 555: 111725, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868425

RESUMO

The pancreatic ß cells circadian clock plays a relevant role in glucose metabolism. NADPH oxidase (NOX) family is responsible for producing reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, using NADPH as an electron donor. In pancreatic ß-cells, NOX-derived ROS inhibits basal and glucose-stimulated insulin secretion. Thus, we hypothesized that the absence of BMAL1, a core circadian clock component, could trigger an increase of NOX2-derived ROS in pancreatic ß cells, inhibiting insulin secretion under basal and stimulated glucose conditions. To test such hypothesis, Bmal1 knockdown (KD) was performed in cultured clonal ß-cell line (INS-1E) and knocked out in isolated pancreatic islets, using a tissue-specific ß-cells Bmal1 knockout (KO) mice. The insulin secretion was assessed in the presence of NOX inhibitors. The Bmal1 KD within INS-1E cells elicited a rise of intracellular ROS content under both glucose stimuli (2.8 mM and 16.7 mM), associated with an increase in Nox2 expression. Additionally, alterations of glutathione levels, CuZnSOD and catalase activities, reduction of ATP/ADP ratio, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and aconitase activities, followed by glucokinase and Slc2a2 (Glut2) expression were also observed in INS-1E ß-cells, reflecting in a diminished insulin secretion pattern. The isolated islets from ß-cell Bmal1-/- mice have shown a similar cellular response, where an increased NOX2-derived ROS content and a reduced basal- and glucose-stimulated insulin secretion were observed. Therefore, together with NOX inhibition (Apocynin), polyethene-glycol linked to superoxide dismutase (PEG-SOD), phorbol myristate acetate (PMA), and diethyldithiocarbamate (DDC) data, our findings suggest a possible BMAL1-mediated NOX2-derived ROS generation in pancreatic ß cells, leading to the modulation of both basal- and glucose-stimulated insulin secretion.


Assuntos
Células Secretoras de Insulina , Fatores de Transcrição ARNTL , Animais , Glucose , Insulina , Secreção de Insulina , Camundongos , NADPH Oxidases , Espécies Reativas de Oxigênio
6.
Antioxidants (Basel) ; 11(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052612

RESUMO

Irreversible pancreatic ß-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The ß-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The ß-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the ß-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key ß-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.

7.
Oxid Med Cell Longev ; 2021: 3683796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621463

RESUMO

Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO-) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO- metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO- concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO- bioavailability and its underlying regulatory mechanisms.


Assuntos
Rim/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal , Transdução de Sinais/efeitos dos fármacos , Animais , Disponibilidade Biológica , Glicemia/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Mitocôndrias/metabolismo , Modelos Animais , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo
8.
Biomed Pharmacother ; 135: 111138, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360781

RESUMO

In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.


Assuntos
Aminoquinolinas/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologia , Influenza Pandêmica, 1918-1919 , SARS-CoV-2/efeitos dos fármacos , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antivirais/farmacologia , Humanos , Influenza Pandêmica, 1918-1919/prevenção & controle , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
9.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147803

RESUMO

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (ß-Amyloid; Aß). Both IAPP and Aß can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.


Assuntos
Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Choque Térmico/metabolismo , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Inflamação , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas tau/metabolismo
10.
Nutrients ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053823

RESUMO

Supplementation with the most efficient form of Vitamin D (VitD3) results in improvements in energy metabolism, muscle mass and strength in VitD deficient individuals. Whether similar outcomes occur in VitD sufficient individuals' remains to be elucidated. The aim of this study is to determine the effect of VitD3 supplementation on resting metabolic rate (RMR), body composition and strength in VitD sufficient physically active young adults. Participants completed pre-supplementation testing before being matched for sunlight exposure and randomly allocated in a counterbalanced manner to the VitD3 or placebo group. Following 12 weeks of 50 IU/kg body-mass VitD3 supplementation, participants repeated the pre-supplementation testing. Thirty-one adults completed the study (19 females and 12 males; mean ± standard deviation (SD); age = 26.6 ± 4.9 years; BMI = 24.2 ± 4.1 kg·m2). The VitD group increased serum total 25(OH)D by 30 nmol/L while the placebo group decreased total serum concentration by 21 nmol/L, reaching 123 (51) and 53 (42.2) nmol/L, respectively. There were no significant changes in muscle strength or power, resting metabolic rate and body composition over the 12-week period. Physically active young adults that are VitD sufficient have demonstrated that no additional physiological effects of achieving supraphysiological serum total 25(OH)D concentrations after VitD3 supplementation.


Assuntos
Metabolismo Basal/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Força Muscular/efeitos dos fármacos , Vitamina D/farmacologia , Adulto , Calcitriol , Metabolismo Energético , Feminino , Humanos , Masculino , Terapia Nutricional , Inquéritos e Questionários , Vitamina D/sangue , Adulto Jovem
11.
Methods Mol Biol ; 2076: 241-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31586332

RESUMO

The role of oxidative stress in the pathogenesis of type 2 diabetes (T2D), especially pancreatic ß-cell dysfunction and death, has become apparent in the last two decades. Peroxidase- and catalase-based antioxidant mechanisms are particularly weak in ß-cells and can be easily overwhelmed by excessive production of reactive oxygen and nitrogen species in the course of pathological processes. Recent research has attempted to define in detail the mechanistic aspects of oxidative stress-induced ß-cell dysfunction. Here, we describe the procedures for the measurement of various parameters important to assess oxidative stress in pancreatic ß-cells. Detailed protocols for determination of nitric oxide (NO) production, the glutathione redox status, and general oxidative status in ß-cells are presented in this chapter.


Assuntos
Bioensaio/métodos , Células Secretoras de Insulina/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Bioensaio/normas , Diabetes Mellitus Tipo 2/metabolismo , Citometria de Fluxo , Radicais Livres/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31781044

RESUMO

The role of growth hormone (GH) in human fertility is widely debated with some studies demonstrating improvements in oocyte yield, enhanced embryo quality, and in some cases increased live births with concomitant decreases in miscarriage rates. However, the basic biological mechanisms leading to these clinical differences are not well-understood. GH and the closely-related insulin-like growth factor (IGF) promote body growth and development via action on key metabolic organs including the liver, skeletal muscle, and bone. In addition, their expression and that of their complementary receptors have also been detected in various reproductive tissues including the oocyte, granulosa, and testicular cells. Therefore, the GH/IGF axis may directly regulate female and male gamete development, their quality, and ultimately competence for implantation. The ability of GH and IGF to modulate key signal transduction pathways such as the MAP kinase/ERK, Jak/STAT, and the PI3K/Akt pathway along with the subsequent effects on cell division and steroidogenesis indicates that these growth factors are centrally located to alter cell fate during proliferation and survival. In this review, we will explore the function of GH and IGF in regulating normal ovarian and testicular physiology, while also investigating the effects on cell signal transduction pathways with subsequent changes in cell proliferation and steroidogenesis. The aim is to clarify the role of GH in human fertility from a molecular and biochemical point of view.

13.
J Steroid Biochem Mol Biol ; 193: 105423, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279004

RESUMO

The active form of Vitamin D (1,25(OH)2D), has been suggested to have a regulatory role in skeletal muscle function and metabolism, however, the effects and mechanisms of vitamin D (VitD) action in this tissue remain to be fully established. In this study, we have used primary human skeletal muscle myoblast (HSMM) cells that display typical characteristics of human skeletal muscle function and protein levels, to investigate the effects of the active form of VitD on proliferation, differentiation, protein synthesis and bioenergetics. Myoblast cells were treated with 100 nM of VitD for 24 h, 48 h, 72 h and five days (cells were differentiated into myotubes) and then analyses were performed. We report that VitD inhibits myoblast proliferation and enhances differentiation by altering the expression of myogenic regulatory factors. In addition, we found that protein synthesis signaling improved in myotubes after VitD treatment in the presence of insulin. We also report an increase in oxygen consumption rate after 24 h of treatment in myoblasts and after 5 days of treatment in myotubes after VitD exposure. VitD significantly impacted HSMM myogenesis, as well as protein synthesis in the presence of insulin.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Humanos , Insulina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
14.
Nutr Res Rev ; 32(2): 192-204, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31203824

RESUMO

Vitamin D receptor expression and associated function have been reported in various muscle models, including C2C12, L6 cell lines and primary human skeletal muscle cells. It is believed that 1,25-hydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, has a direct regulatory role in skeletal muscle function, where it participates in myogenesis, cell proliferation, differentiation, regulation of protein synthesis and mitochondrial metabolism through activation of various cellular signalling cascades, including the mitogen-activated protein kinase pathway(s). It has also been suggested that 1,25(OH)2D3 and its associated receptor have genomic targets, resulting in regulation of gene expression, as well as non-genomic functions that can alter cellular behaviour through binding and modification of targets not directly associated with transcriptional regulation. The molecular mechanisms of vitamin D signalling, however, have not been fully clarified. Vitamin D inadequacy or deficiency is associated with muscle fibre atrophy, increased risk of chronic musculoskeletal pain, sarcopenia and associated falls, and may also decrease RMR. The main purpose of the present review is to describe the molecular role of vitamin D in skeletal muscle tissue function and metabolism, specifically in relation to proliferation, differentiation and protein synthesis processes. In addition, the present review also includes discussion of possible genomic and non-genomic pathways of vitamin D action.


Assuntos
Músculo Esquelético/fisiologia , Vitamina D/fisiologia , Animais , Calcitriol/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica , Humanos , Mitocôndrias Musculares/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/citologia , Receptores de Calcitriol/fisiologia , Transdução de Sinais , Vitamina D/administração & dosagem , Vitamina D/biossíntese
15.
Am J Physiol Cell Physiol ; 317(3): C420-C433, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216193

RESUMO

It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: ß-cell dysfunction and peripheral tissue insulin resistance.


Assuntos
Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo/fisiologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
16.
J Diabetes Res ; 2019: 4858740, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723746

RESUMO

Obesity, air pollution, and exercise induce alterations in the heat shock response (HSR), in both intracellular 70 kDa heat shock proteins (iHSP70) and the plasmatic extracellular form (eHSP72). Extra-to-intracellular HSP70 ratio (H-index = eHSP70/iHSP70 ratio) represents a candidate biomarker of subclinical health status. This study investigated the effects of moderate- and high-intensity exercise in the HSR and oxidative stress parameters, in obese mice exposed to fine particulate matter (PM2.5). Thirty-day-old male isogenic B6129F2/J mice were maintained for 16 weeks on standard chow or high-fat diet (HFD). Then, mice were exposed to either saline or 50 µg of PM2.5 by intranasal instillation and subsequently maintained at rest or subjected to moderate- or high-intensity swimming exercise. HFD mice exhibited high adiposity and glucose intolerance at week 16th. HFD mice submitted to moderate- or high-intensity exercise were not able to complete the exercise session and showed lower levels of eHSP70 and H-index, when compared to controls. PM2.5 exposure modified the glycaemic response to exercise and modified hematological responses in HFD mice. Our study suggests that obesity is a critical health condition for exercise prescription under PM2.5 exposure.


Assuntos
Dieta Hiperlipídica , Proteínas de Choque Térmico HSP70/metabolismo , Obesidade/metabolismo , Material Particulado , Condicionamento Físico Animal/fisiologia , Animais , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Obesos , Estresse Oxidativo/fisiologia
17.
Nutrients ; 10(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360490

RESUMO

Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.


Assuntos
Suplementos Nutricionais , Glutamina/administração & dosagem , Nutrição Enteral , Glutamina/deficiência , Humanos , Nutrição Parenteral
18.
Peptides ; 100: 140-149, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412813

RESUMO

Pharmacological long lasting Glucagon-like peptide-1 (GLP-1) analogues, such as Exendin-4, have become widely used diabetes therapies. Chronic GLP-1R stimulation has been linked to ß-cell protection and these pro-survival actions of GLP-1 are dependent on the activation of the mammalian target of rapamycin (mTOR) leading to accumulation of Hypoxia inducible factor 1 alpha (HIF-1α). Recent studies from our lab indicate that prolonged GLP-1R stimulation promotes metabolic reprograming of ß-cells towards a highly glycolytic phenotype and activation of the mTOR/HIF-1α pathway was required for this action. We hypothesised that GLP-1 induced metabolic changes depend on the activation of mTOR and HIF-1α, in a cascade that occurs after triggering of a potential Insulin-like growth factor 1 receptor (IGF-1R) or the Insulin receptor (IR) autocrine loops. Loss of function of these receptors, through the use of small interfering RNA, or neutralizing antibodies directed towards their products, was undertaken in conjunction with functional assays. Neither of these strategies mitigated the effect of GLP-1 on glucose uptake, protein expression or bioenergetic flux. Our data indicates that activation of IGF-1R and/or the IR autocrine loops resulting in ß-cell protection and function, involve mechanisms independent to the enhanced metabolic effects resulting from sustained GLP-1R activation.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Animais , Comunicação Autócrina/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Metabolismo Energético/efeitos dos fármacos , Exenatida/administração & dosagem , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Ratos , Serina-Treonina Quinases TOR/genética
19.
Sci Rep ; 7(1): 2661, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572610

RESUMO

Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1α) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Secretoras de Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
20.
Reproduction ; 153(1): R29-R42, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390417

RESUMO

Vitamin D (VitD) is an important secosteroid and has attracted attention in several areas of research due to common VitD deficiency in the population, and its potential to regulate molecular pathways related to chronic and inflammatory diseases. VitD metabolites and the VitD receptor (VDR) influence many tissues including those of the reproductive system. VDR expression has been demonstrated in various cell types of the male reproductive tract, including spermatozoa and germ cells, and in female reproductive tissues including the ovaries, placenta and endometrium. However, the molecular role of VitD signalling and metabolism in reproductive function have not been fully established. Consequently, the aim of this work is to review current metabolic and molecular aspects of the VitD­VDR axis in reproductive medicine and to propose the direction of future research. Specifically, the influence of VitD on sperm motility, calcium handling, capacitation, acrosin reaction and lipid metabolism is examined. In addition, we will also discuss the effect of VitD on sex hormone secretion and receptor expression in primary granulosa cells, along with the impact on cytokine production in trophoblast cells. The review concludes with a discussion of the recent developments in VitD­VDR signalling specifically related to altered cellular bioenergetics, which is an emerging concept in the field of reproductive medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...