Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Eur J Neurosci ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695253

RESUMO

Empathetic relationships and the social transference of behaviours have been shown to occur in humans, and more recently through the development of rodent models, where both fear and pain phenotypes develop in observer animals. Clinically, observing traumatic events can induce 'trauma and stressor-related disorders' as defined in the DSM 5. These disorders are often comorbid with pain and gastrointestinal disturbances; however, our understanding of how gastrointestinal - or visceral - pain can be vicariously transmitted is lacking. Visceral pain originates from the internal organs, and despite its widespread prevalence, remains poorly understood. We established an observation paradigm to assess the impact of witnessing visceral pain. We utilised colorectal distension (CRD) to induce visceral pain behaviours in a stimulus rodent while the observer rodent observed. Twenty four hours post-observation, the observer rodent's visceral sensitivity was assessed using CRD. The observer rodents were found to have significant hyperalgesia as determined by lower visceral pain threshold and higher number of total pain behaviours compared with controls. The behaviours of the observer animals during the observation were found to be correlated with the behaviours of the stimulus animal employed. We found that observer animals had hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis, highlighted by reduced corticosterone at 90 minutes post-CRD. Using c-Fos immunohistochemistry we showed that observer animals also had increased activation of the anterior cingulate cortex, and decreased activation of the paraventricular nucleus, compared with controls. These results suggest that witnessing another animal in pain produces a behavioural phenotype and impacts the brain-gut axis.

2.
Neurobiol Stress ; 30: 100629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584880

RESUMO

In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.

3.
Microb Biotechnol ; 17(4): e14462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593310

RESUMO

Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Emaranhados Neurofibrilares/patologia , Encéfalo , Inflamação/patologia
4.
Transl Psychiatry ; 14(1): 195, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658547

RESUMO

Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.


Assuntos
Comportamento Animal , Microbioma Gastrointestinal , Hipocampo , Neurogênese , Condicionamento Físico Animal , Animais , Microbioma Gastrointestinal/fisiologia , Neurogênese/fisiologia , Condicionamento Físico Animal/fisiologia , Ratos , Masculino , Comportamento Animal/fisiologia , Antibacterianos/farmacologia , Ratos Sprague-Dawley , Comportamento Sedentário
5.
Cell Rep ; 43(4): 114079, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613781

RESUMO

Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.


Assuntos
Ritmo Circadiano , Microbioma Gastrointestinal , Triptofano , Triptofano/metabolismo , Animais , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Estresse Fisiológico
7.
Nat Rev Gastroenterol Hepatol ; 21(4): 222-247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355758

RESUMO

Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.


Assuntos
Eixo Encéfalo-Intestino , Comunicação Celular , Microbioma Gastrointestinal , Humanos
8.
Nat Microbiol ; 9(2): 359-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316929

RESUMO

The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.


Assuntos
Bacteriófagos , Microbiota , Vírus , Animais , Camundongos , Viroma , RNA Ribossômico 16S/genética , Vírus/genética , Bacteriófagos/genética , Imunidade
9.
Neurosci Biobehav Rev ; 158: 105562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278378

RESUMO

Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Probióticos , Humanos , Eixo Encéfalo-Intestino , Saúde Mental
10.
Biol Psychiatry ; 95(4): 348-360, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918459

RESUMO

Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.


Assuntos
Encefalopatias , Microbioma Gastrointestinal , Transtornos Mentais , Humanos , Dieta , Encéfalo , Encefalopatias/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(1): e2308706120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147649

RESUMO

Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.


Assuntos
Microbioma Gastrointestinal , Fobia Social , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Ocitocina , RNA Ribossômico 16S/genética , Medo , Ansiedade/psicologia
12.
Nutr Rev ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007616

RESUMO

CONTEXT: Dietary fibers hold potential to influence depressive and anxiety outcomes by modulating the microbiota-gut-brain axis, which is increasingly recognized as an underlying factor in mental health maintenance. OBJECTIVE: Evidence for the effects of fibers on depressive and anxiety outcomes remains unclear. To this end, a systematic literature review and a meta-analysis were conducted that included observational studies and randomized controlled trials (RCTs). DATA SOURCES: The PubMed, Embase, CENTRAL, CINAHL, and PsychINFO databases were searched for eligible studies. DATA EXTRACTION: Study screening and risk-of-bias assessment were conducted by 2 independent reviewers. DATA ANALYSIS: Meta-analyses via random effects models were performed to examine the (1) association between fiber intake and depressive and anxiety outcomes in observational studies, and (2) effect of fiber intervention on depressive and anxiety outcomes compared with placebo in RCTs. A total of 181 405 participants were included in 23 observational studies. In cross-sectional studies, an inverse association was observed between fiber intake and depressive (Cohen's d effect size [d]: -0.11; 95% confidence interval [CI]: -0.16, -0.05) and anxiety (d = -0.25; 95%CI, -0.38, -0.12) outcomes. In longitudinal studies, there was an inverse association between fiber intake and depressive outcomes (d = -0.07; 95%CI, -0.11, -0.04). In total, 740 participants were included in 10 RCTs, all of whom used fiber supplements. Of note, only 1 RCT included individuals with a clinical diagnosis of depression. No difference was found between fiber supplementation and placebo for depressive (d = -0.47; 95%CI, -1.26, 0.31) or anxiety (d = -0.30; 95%CI, -0.67, 0.07) outcomes. CONCLUSION: Although observational data suggest a potential benefit for higher fiber intake for depressive and anxiety outcomes, evidence from current RCTs does not support fiber supplementation for improving depressive or anxiety outcomes. More research, including RCTs in clinical populations and using a broad range of fibers, is needed. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42021274898.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37962812

RESUMO

In the treatment of depressive disorders, conventional antidepressant therapy has been the mainstay of clinical management, along with well-established nonpharmacological interventions such as various kinds of psychotherapy. Over the last 2 decades, there has been considerable interest in the role of the gastrointestinal system and its microbiota on brain function, behavior, and mental health. Components of what is referred to as the microbiota-gut-brain axis have been uncovered, and further research has elicited functional capabilities such as "gut-brain modules." Some studies have found associations with compositional alterations of gut microbiota in patients with depressive disorders and individuals experiencing symptoms of depression. Regarding the pathogenesis and neurobiology of depression itself, there appears to be a multifactorial contribution, in addition to the theories involving deficits in catecholaminergic and monoamine neurotransmission. Interestingly, there is evidence to suggest that antidepressants may play a role in modulating the gut microbiota, thereby possibly having an impact on the microbiota-gut-brain axis in this manner. The development of prebiotics, probiotics, and synbiotics has led to studies investigating not only their impact on the microbiota but also their therapeutic value in mental health. These psychobiotics have the potential to be used as therapeutic adjuncts in the treatment of depression. Regarding future directions, and in an attempt to further understand the role of the microbiota-gut-brain axis in depression, more studies such as those involving fecal microbiota transplantation will be required. In addition to recent findings, it is also suggested that more research will have to be undertaken to elicit whether specific strains of gut organisms are linked to depression. In terms of further investigation of the therapeutic potential of prebiotics, probiotics, and synbiotics as adjuncts to antidepressant treatment, we also expect there to be more research targeting specific microorganisms, as well as a strong focus on the effects of specific prebiotic fibers from an individualized (personalized) point of view.

14.
Neuron ; 111(21): 3354-3357, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918351

RESUMO

John Cryan focuses his research on the intersection of the brain, gut, and microbiome. He discusses with Neuron the growing acceptance among neuroscientists for the role of the microbiome in brain function. A passionate scientific communicator, Cryan gives insight into the importance of public advocacy and seeking a broad network.


Assuntos
Encéfalo , Microbiota , Masculino , Humanos
15.
Brain ; 146(12): 4916-4934, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849234

RESUMO

Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Hipocampo , Cognição , Microbioma Gastrointestinal/fisiologia , Neurogênese/fisiologia
16.
Brain Behav Immun Health ; 32: 100673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37662485

RESUMO

Lacticaseibacillus paracasei Lpc-37 (Lpc-37) has previously shown to reduce perceived stress in healthy adults. The ChillEx study investigated whether Lpc-37 reduces stress in a model of chronic examination stress in healthy students. One hundred ninety university students (18-40 y) were randomized to take 1.56 × 1010 colony-forming units of Lpc-37 or placebo (1:1) each day for 10 weeks, in a triple-blind, parallel, multicenter clinical trial consisting of six visits: two screening visits, a baseline visit, and visits at 4, 8, and 10 weeks after baseline. The primary objective was to demonstrate that Lpc-37 reduces stress, as measured by the change in state anxiety from baseline to just before the first examination, after 8 weeks using the State Trait Anxiety Inventory (STAI-state). Secondary objectives aimed to demonstrate that Lpc-37 modulates psychological stress-induced symptoms and biomarkers related to mood and sleep. An exploratory analysis of fecal microbiota composition was also conducted. There was no difference between Lpc-37 and placebo groups in the change of STAI-state score (estimate 1.03; 95% confidence interval [CI]: -1.62, 3.67; p = 0.446). None of the secondary outcomes resulted in significant results when corrected for multiplicity, but exploratory results were notable. Results showed an improvement in sleep-disturbance scores (odds ratio 0.30; 95% CI: 0.11, 0.82; p = 0.020) and reduction in duration of sleep (odds ratio 3.52; 95% CI: 1.46, 8.54; p = 0.005) on the Pittsburgh Sleep Quality Index questionnaire after 8 weeks in the Lpc-37 group compared to placebo. A reduction in Bond Lader VAS-alertness was also demonstrated in the Lpc-37 group compared to placebo (estimate -3.97; 95% CI: -7.78, -0.15; p = 0.042) just prior to the examination. Analysis of fecal microbiota found no differences between study groups for alpha and beta diversity or microbiota abundance. Adverse events were similar between groups. Vital signs, safety-related laboratory measures, and gastrointestinal parameters were stable during the trial. In conclusion, probiotic Lpc-37 was safe but had no effect on stress, mood, or anxiety in healthy university students in this model of chronic academic stress. ClinicalTrials.gov: NCT04125810.

17.
J Physiol ; 601(20): 4491-4538, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37756251

RESUMO

The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.

18.
Sci Rep ; 13(1): 16465, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777528

RESUMO

Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.


Assuntos
Dieta Cetogênica , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Tecido Adiposo/metabolismo , Dieta com Restrição de Carboidratos , Obesidade/metabolismo , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo
20.
Meat Sci ; 205: 109316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625355

RESUMO

In this study, rapid respirometric microbial testing was combined with 16S rRNA amplicon sequencing, to assess the composition of microbiota in a total of 64 samples of commercial beef, turkey, lamb and pork mince. The O2 sensor-based respirometry system, while producing the anticipated total aerobic viable counts (TVC) data and patterns for most samples, also revealed unusual (linear) respiration profiles for some samples, mostly lamb and pork mince. The TVC values for beef mince, produced by respirometry and calculated using the available calibration equation, correlated well with the conventional plate counting method, ISO 4833-1:2013, 2013, while for the other species the correlation was less good. These effects, not observed in previous studies employing various food matrices, require further investigation. Using the same samples (crude homogenates) as in respirometry, the whole microbiome was also analysed by 16S rRNA amplicon sequencing for each mince-type. The sequencing showed an overall decrease in alpha diversity over shelf-life, with lamb and pork mince maintaining a proportion of rare taxa. Some taxa exhibited significant changes in abundance over shelf-life and after the respirometric analysis, with beef mince exhibiting a decrease in aerobic bacteria and an increase in facultative anaerobes. Beta diversity was also seen to depend on mince-type. Thus, the combined use of respirometry and sequencing techniques shows promise as a useful and unique analytical approach for food quality and safety evaluation, However, more data points and in-depth analysis are required to back up the findings of this initial study.


Assuntos
Microbiota , Bovinos , Animais , Ovinos , RNA Ribossômico 16S/genética , Calibragem , Qualidade dos Alimentos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...