Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Biomed Opt ; 27(7)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112513

RESUMO

SIGNIFICANCE: Tissue-like solid phantoms with identical optical properties, known within tolerant uncertainty, are of crucial importance in diffuse optics for instrumentation assessment, interlaboratory comparison studies, industrial standards, and multicentric clinical trials. AIM: The reproducibility in fabrication of homogeneous solid phantoms is focused based on spectra measurements by instrument comparisons grounded on the time-resolved diffuse optics. APPROACH: Epoxy-resin and silicone phantoms are considered as matrices and both employ three different instruments for time-resolved diffuse spectroscopy within the spectral range of 540 to 1100 nm. In particular, we fabricated two batches of five phantoms each in epoxy resin and silicone. Then, we evaluated the intra- and interbatch variability with respect to the instrument precision, by considering the coefficient of variation (CV) of absorption and reduced scattering coefficients. RESULTS: We observed a similar precision for the three instruments, within 2% for repeated measurements on the same phantom. For epoxy-resin phantoms, the intra- and the interbatch variability reached the instrument precision limit, demonstrating a very good phantom reproducibility. For the silicone phantoms, we observed larger values for intra- and interbatch variability. In particular, at worst, for reduced scattering coefficient interbatch CV was about 5%. CONCLUSIONS: Results suggest that the fabrication of solid phantoms, especially considering epoxy-resin matrix, is highly reproducible, even if they come from different batch fabrications and are measured using different instruments.


Assuntos
Óptica e Fotônica , Silicones , Imagens de Fantasmas , Reprodutibilidade dos Testes , Análise Espectral
3.
PLoS One ; 16(6): e0253181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133454

RESUMO

The interest for Fused Deposition Modelling (FDM) in the field of Diffuse Optics (DO) is rapidly increasing. The most widespread FDM materials are polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS), thanks to their low cost and easiness-to-print. This is why, in this study, 3D printed samples of PLA and ABS materials were optically characterized in the range from the UV up to the IR wavelengths, in order to test their possible employment for probe construction in DO applications. To this purpose, measurements with Near Infrared Spectroscopy and Diffuse Correlation Spectroscopy techniques were considered. The results obtained show how the material employed for probe construction can negatively affect the quality of DO measurements.


Assuntos
Acrilonitrila , Butadienos , Elastômeros , Fenômenos Ópticos , Poliésteres , Impressão Tridimensional , Estirenos , Raios Infravermelhos , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta
4.
Sci Rep ; 11(1): 6579, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753778

RESUMO

Accurate monitoring of treatment is crucial in minimally-invasive radiofrequency ablation in oncology and cardiovascular disease. We investigated alterations in optical properties of ex-vivo bovine tissues of the liver, heart, muscle, and brain, undergoing the treatment. Time-domain diffuse optical spectroscopy was used, which enabled us to disentangle and quantify absorption and reduced scattering spectra. In addition to the well-known global (1) decrease in absorption, and (2) increase in reduced scattering, we uncovered new features based on sensitive detection of spectral changes. These absorption spectrum features are: (3) emergence of a peak around 840 nm, (4) redshift of the 760 nm deoxyhemoglobin peak, and (5) blueshift of the 970 nm water peak. Treatment temperatures above 100 °C led to (6) increased absorption at shorter wavelengths, and (7) further decrease in reduced scattering. This optical behavior provides new insights into tissue response to thermal treatment and sets the stage for optical monitoring of radiofrequency ablation.


Assuntos
Biomarcadores , Imagem Óptica , Ablação por Radiofrequência , Imagem Óptica/métodos , Especificidade de Órgãos , Ablação por Radiofrequência/métodos , Espalhamento de Radiação , Análise Espectral/métodos , Temperatura
5.
Biomed Opt Express ; 12(2): 1105-1122, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680561

RESUMO

A recent upgrade of the time domain multi-wavelength optical mammograph developed by Politecnico di Milano achieved good performance in laboratory tests [Biomed. Opt. Express9, 755 (2018).10.1364/BOE.9.000755]. However, it proved unsatisfactory when in vivo measurements were finally performed. That led to a further upgrade, including the replacement of the time-to-digital converter with a new model, and the related set-up changes. The new instrument version offers improved laboratory performance (as assessed through established protocols: BIP and MEDPHOT) and good in vivo performance (extension of the scanned breast area, repeatability, consistency of estimated tissue composition with physiology). Besides introducing the new set-up and detailing its laboratory and in vivo performance, we highlight the importance of systematic in vivo testing before entering clinical trials.

6.
Biomed Opt Express ; 11(5): 2779-2793, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499960

RESUMO

The human abdominal region is very heterogeneous and stratified with subcutaneous adipose tissue (SAT) being one of the primary layers. Monitoring this tissue is crucial for diagnostic purposes and to estimate the effects of interventions like caloric restriction or bariatric surgery. However, the layered nature of the abdomen poses a major problem in monitoring the SAT in a non-invasive way by diffuse optics. In this work, we examine the possibility of using multi-distance broadband time domain diffuse optical spectroscopy to assess the human abdomen non-invasively. Broadband absorption and reduced scattering spectra from 600 to 1100 nm were acquired at 1, 2 and 3 cm source-detector distances on ten healthy adult male volunteers, and then analyzed using a homogeneous model as an initial step to understand the origin of the detected signal and how tissue should be modeled to derive quantitative information. The results exhibit a clear influence of the layered nature on the estimated optical properties. Clearly, the underlying muscle makes a relevant contribution in the spectra measured at the largest source-detector distance for thinner subjects related to blood and water absorption. More unexpectedly, also the thin superficial skin layer yields a direct contamination, leading to higher water content and steeper reduced scattering spectra at the shortest distance, as confirmed also by simulations. In conclusion, provided that data analysis properly accounts for the complex tissue structure, diffuse optics may offer great potential for the continuous non-invasive monitoring of abdominal fat.

7.
Biomed Opt Express ; 9(2): 755-770, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552410

RESUMO

A novel detection chain, based on 8 Silicon Photomultipliers (forming a wide-area custom-made detection probe) and on a time-to-digital converter, was developed to improve the signal level in multi-wavelength (635-1060 nm) time domain optical mammography. The performances of individual components and of the overall chain were assessed using established protocols (BIP and MEDPHOT). The photon detection efficiency was improved by up to 3 orders of magnitude, and the maximum count rate level was increased by a factor of 10 when compared to the previous system, based on photomultiplier tubes and conventional time-correlated single-photon counting boards. In the estimate of optical parameters, the novel detection chain provides performances comparable to the previous system, widely validated in clinics, but with higher signal level, higher robustness, and at a lower price per channel, thus targeting important requirements for clinical applications.

8.
Opt Express ; 25(5): 4585-4597, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380730

RESUMO

We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth.

9.
Sci Rep ; 7: 40683, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091596

RESUMO

Several techniques are being investigated as a complement to screening mammography, to reduce its false-positive rate, but results are still insufficient to draw conclusions. This initial study explores time domain diffuse optical imaging as an adjunct method to classify non-invasively malignant vs benign breast lesions. We estimated differences in tissue composition (oxy- and deoxyhemoglobin, lipid, water, collagen) and absorption properties between lesion and average healthy tissue in the same breast applying a perturbative approach to optical images collected at 7 red-near infrared wavelengths (635-1060 nm) from subjects bearing breast lesions. The Discrete AdaBoost procedure, a machine-learning algorithm, was then exploited to classify lesions based on optically derived information (either tissue composition or absorption) and risk factors obtained from patient's anamnesis (age, body mass index, familiarity, parity, use of oral contraceptives, and use of Tamoxifen). Collagen content, in particular, turned out to be the most important parameter for discrimination. Based on the initial results of this study the proposed method deserves further investigation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mama/diagnóstico por imagem , Mama/patologia , Mamografia/métodos , Área Sob a Curva , Composição Corporal , Diagnóstico Diferencial , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Análise Espectral
10.
J Biomed Opt ; 21(9): 091311, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27403837

RESUMO

Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia , Imagem Óptica , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Óptica
11.
J Biomed Opt ; 20(12): 121304, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220211

RESUMO

A mechanically switchable solid inhomogeneous phantom simulating localized absorption changes was developed and characterized. The homogeneous host phantom was made of epoxy resin with black toner and titanium dioxide particles added as absorbing and scattering components, respectively. A cylindrical rod, movable along a hole in the block and made of the same material, has a black polyvinyl chloride cylinder embedded in its center. By varying the volume and position of the black inclusion, absorption perturbations can be generated over a large range of magnitudes. The phantom has been characterized by various time-domain diffuse optics instruments in terms of absorption and scattering spectra, transmittance images, and reflectance contrast. Addressing a major application of the phantom for performance characterization for functional near-infrared spectroscopy of the brain, the contrast was measured in reflectance mode while black cylinders of volumes from ≈20 mm3 to ≈270 mm3 were moved in lateral and depth directions, respectively. The new type of solid inhomogeneous phantom is expected to become a useful tool for routine quality check of clinical instruments or implementation of industrial standards provided an experimental characterization of the phantom is performed in advance.


Assuntos
Análise de Falha de Equipamento/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imagem Molecular/instrumentação , Imagem Óptica/instrumentação , Imagens de Fantasmas , Análise Espectral/instrumentação , Desenho de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Biomed Opt Express ; 6(7): 2609-23, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26203385

RESUMO

The in-vivo optical properties of the human head are investigated in the 600-1100 nm range on different subjects using continuous wave and time domain diffuse optical spectroscopy. The work was performed in collaboration with different research groups and the different techniques were applied to the same subject. Data analysis was carried out using homogeneous and layered models and final results were also confirmed by Monte Carlo simulations. The depth sensitivity of each technique was investigated and related to the probed region of the cerebral tissue. This work, based on different validated instruments, is a contribution to fill the existing gap between the present knowledge and the actual in-vivo values of the head optical properties.

13.
PLoS One ; 10(6): e0128941, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029912

RESUMO

BACKGROUND: Breast tissue composition is recognized as a strong and independent risk factor for breast cancer. It is a heritable feature, but is also significantly affected by several other elements (e.g., age, menopause). Nowadays it is quantified by mammographic density, thus requiring the use of ionizing radiation. Optical techniques are absolutely non-invasive and have already proved effective in the investigation of biological tissues, as they are sensitive to tissue composition and structure. METHODS: Time domain diffuse optical spectroscopy was performed at 7 wavelengths (635-1060 nm) on 200 subjects to derive their breast tissue composition (in terms of water, lipid and collagen content), blood parameters (total hemoglobin content and oxygen saturation level), and information on the microscopic structure (scattering amplitude and power). The dependence of all optically-derived parameters on age, menopausal status, body mass index, and use of oral contraceptives, and the correlation with mammographic density were investigated. RESULTS: Younger age, premenopausal status, lower body mass index values, and use of oral contraceptives all correspond to significantly higher water, collagen and total hemoglobin content, and lower lipid content (always p < 0.05 and often p < 10-4), while oxygen saturation level and scattering parameters show significant dependence only on some conditions. Even when age-adjusted groups of subjects are compared, several optically derived parameters (and in particular always collagen and total hemoglobin content) remain significantly different. CONCLUSIONS: Time domain diffuse optical spectroscopy can probe non-invasively breast tissue composition and physiologic blood parameters, and provide information on tissue structure. The measurement is suitable for in vivo studies and monitoring of changes in breast tissue (e.g., with age, lifestyle, chemotherapy, etc.) and to gain insight into related processes, like the origin of cancer risk associated with breast density.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Adulto , Idoso , Índice de Massa Corporal , Densidade da Mama , Demografia/métodos , Feminino , Humanos , Glândulas Mamárias Humanas/anormalidades , Glândulas Mamárias Humanas/patologia , Menopausa/fisiologia , Pessoa de Meia-Idade , Óptica e Fotônica/métodos , Pré-Menopausa/fisiologia , Fatores de Risco , Tomografia Óptica/métodos
14.
Appl Opt ; 53(31): 7394-401, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25402904

RESUMO

In this paper we demonstrate the advantages of a fast-gated counter in achieving high count-rate and reducing costs of timing equipment in a time-resolved diffuse optical spectroscopy setup. We experimentally prove the equivalence between the fast-gated counter we developed and a traditional time-correlated single-photon counting setup in terms of depth sensitivity and signal-to-noise ratio. Additionally, we show the suitability of this device for bilayer analysis and to estimate the absorption coefficient of homogeneous diffusing media. Finally, we present a proof-of-principle arterial occlusion measurement on a healthy volunteer to validate the proposed approach in a real application. Fast-gated counters can dramatically reduce both costs and complexity in time-resolved multichannel systems, while achieving high count-rate, thus offering a great advantage in applications like brain and muscle functional imaging.

15.
Biomed Opt Express ; 5(10): 3684-98, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360382

RESUMO

The optical characterization of malignant and benign breast lesions is presented. Time-resolved transmittance measurements were performed in the 630-1060 nm range by means of a 7-wavelength optical mammograph, providing both imaging and spectroscopy information. A total of 62 lesions were analyzed, including 33 malignant and 29 benign lesions. The characterization of breast lesions was performed applying a perturbation model based on the high-order calculation of the pathlength of photons inside the lesion, which led to the assessment of oxy- and deoxy-hemoglobin, lipids, water and collagen concentrations. Significant variations between tumor and healthy tissue were observed in terms of both absorption properties and constituents concentration. In particular, benign lesions and tumors show a statistically significant discrimination in terms of absorption at several wavelengths and also in terms of oxy-hemoglobin and collagen content.

16.
J Biomed Opt ; 19(8): 086010, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121479

RESUMO

Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the "Basic Instrumental Performance" protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m² sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.


Assuntos
Algoritmos , Encéfalo/citologia , Análise de Falha de Equipamento/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Tomografia Óptica/instrumentação , Animais , Desenho de Equipamento , Europa (Continente) , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
J Biomed Opt ; 19(8): 086012, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121480

RESUMO

The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain. It was implemented with two types of inhomogeneous liquid phantoms based on Intralipid and India ink with well-defined optical properties. First, small black inclusions were used to mimic localized changes of the absorption coefficient. The position of the inclusions was varied in depth and lateral direction to investigate contrast and spatial resolution. Second, two-layered liquid phantoms with variable absorption coefficients were employed to study the quantification of layer-wide changes and, in particular, to determine depth selectivity, i.e., the ratio of sensitivities for deep and superficial absorption changes. We introduce the tests of the nEUROPt protocol and present examples of results obtained with different instruments and methods of data analysis. This protocol could be a useful step toward performance tests for future standards in diffuse optical imaging.


Assuntos
Algoritmos , Encéfalo/citologia , Análise de Falha de Equipamento/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Tomografia Óptica/instrumentação , Desenho de Equipamento , Europa (Continente) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Biomed Opt ; 19(7): 076011, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023415

RESUMO

We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt.18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.


Assuntos
Imagem Óptica/instrumentação , Imagens de Fantasmas , Modelos Biológicos , Método de Monte Carlo
19.
Biomed Opt Express ; 4(10): 2231-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24156079

RESUMO

We have designed a compact dual wavelength (687 nm, 826 nm) multi-channel (16 sources, 8 detectors) medical device for muscle and brain imaging based on time domain functional near infrared spectroscopy. The system employs the wavelength space multiplexing approach to reduce wavelength cross-talk and increase signal-to-noise ratio. System performances have been tested on homogeneous and heterogeneous tissue phantoms following specifically designed protocols for photon migration instruments. Preliminary in vivo measurements have been performed to validate the instrument capability to monitor hemodynamic parameters changes in the arm muscle during arterial occlusion and in the adult head during a motor task experiment.

20.
J Biomed Opt ; 18(6): 060507, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23804215

RESUMO

A time-domain multiwavelength (635 to 1060 nm) optical mammography was performed on 147 subjects with recent x-ray mammograms available, and average breast tissue composition (water, lipid, collagen, oxy- and deoxyhemoglobin) and scattering parameters (amplitude a and slope b) were estimated. Correlation was observed between optically derived parameters and mammographic density [Breast Imaging and Reporting Data System (BI-RADS) categories], which is a strong risk factor for breast cancer. A regression logistic model was obtained to best identify high-risk (BI-RADS 4) subjects, based on collagen content and scattering parameters. The model presents a total misclassification error of 12.3%, sensitivity of 69%, specificity of 94%, and simple kappa of 0.84, which compares favorably even with intraradiologist assignments of BI-RADS categories.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Detecção Precoce de Câncer/métodos , Adulto , Idoso , Colágeno/química , Feminino , Hemoglobinas/química , Humanos , Lipídeos/química , Mamografia/métodos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Óptica e Fotônica , Oxigênio/química , Oxiemoglobinas/química , Probabilidade , Análise de Regressão , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...