Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340725

RESUMO

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ativação Metabólica , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Fibrose , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
2.
Liver Int ; 44(4): 996-1010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38293766

RESUMO

BACKGROUND AND AIMS: We evaluated tolerogenic C-type lectin LSECtin loss in cirrhosis and its potential regulation by cytokines. METHODS: Liver tissue from patients with cirrhosis and healthy controls, immortalised and generated LSECtin-CRISPR immortalised LSECs, and murine primary LSECs from the CCl4 model were handled. RESULTS: LSECtin expression was reduced in liver tissue from cirrhotic patients, and it decreased from compensated to decompensated disease. Increased phosphorylation of MAPK, Akt and NFkB was observed upon LSECtin stimulation in LSEC murine cell line, showing a pattern of inflammatory and chemotactic cytokines either restrained (IL-10, CCL4) or unrestrained (TNF-α, IL-1ß, IL-6, CCL2). CD44 attenuated whereas LAG-3 increased all substrates phosphorylation in combination with TLR4 and TLR2 ligands except for NFkB. TNF-α, IL-1 ß, IL-6 and CCL2 were restrained by LSECtin crosslinking on TLRs studied. Conversely, IL-10 and CCL4 were upregulated, suggesting a LSECtin-TLRs synergistic effect. Also, LSECtin was significantly induced after IL-13 stimulation or combined with anti-inflammatory cytokines in cirrhotic and immortalised LSECs. Th17 and regulatory T cells were progressively increased in the hepatic tissue from compensated to decompensated patients. A significant inverse correlation was present between gene expression levels of CLEC4G/LSECtin and RORγT and FOXP3 in liver tissues. CONCLUSION: LSECtin restrains TLR proinflammatory secretome induced on LSECs by interfering immune response control, survival and MAPKs signalling pathways. The cytokine-dependent induction of LSECtin and the association between LSECtin loss and Th17 cell subset expansion in the liver, provides a solid background for exploring LSECtin retrieval as a mechanism to reprogram LSEC homeostatic function hampered during cirrhosis.


Assuntos
Citocinas , Interleucina-10 , Humanos , Camundongos , Animais , Citocinas/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa , Secretoma , Cirrose Hepática , NF-kappa B/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo
3.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627221

RESUMO

Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.

4.
Liver Int ; 43(9): 1909-1919, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288714

RESUMO

BACKGROUND AND AIMS: Extracellular vesicles (EVs) have emerged as a potential source of circulating biomarkers in liver disease. We evaluated circulating AV+ EpCAM+ CD133+ EVs as a potential biomarker of the transition from simple steatosis to steatohepatitis. METHODS: EpCAM and CD133 liver proteins and EpCAM+ CD133+ EVs levels were analysed in 31 C57BL/6J mice fed with a chow or high fat, high cholesterol and carbohydrates diet (HFHCC) for 52 weeks. The hepatic origin of MVs was addressed using AlbCrexmT/mG mice fed a Western (WD) or Dual diet for 23 weeks. Besides, we assessed plasma MVs in 130 biopsy-proven NAFLD patients. RESULTS: Hepatic expression of EpCAM and CD133 and EpCAM+ CD133+ EVs increased during disease progression in HFHCC mice. GFP+ MVs were higher in AlbCrexmT/mG mice fed a WD (5.2% vs 12.1%) or a Dual diet (0.5% vs 7.3%). Most GFP+ MVs were also positive for EpCAM and CD133 (98.3% and 92.9% respectively), suggesting their hepatic origin. In 71 biopsy-proven NAFLD patients, EpCAM+ CD133+ EVs were significantly higher in those with steatohepatitis compare to those with simple steatosis (286.4 ± 61.9 vs 758.4 ± 82.3; p < 0.001). Patients with ballooning 367 ± 40.6 vs 532.0 ± 45.1; p = 0.01 and lobular inflammation (321.1 ± 74.1 vs 721.4 ± 80.1; p = 0.001), showed higher levels of these EVs. These findings were replicated in an independent cohort. CONCLUSIONS: Circulating levels of EpCAM+ CD133+ MVs in clinical and experimental NAFLD were increased in the presence of steatohepatitis, showing high potential as a non-invasive biomarker for the evaluation and management of these patients.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores , Modelos Animais de Doenças , Dieta Hiperlipídica
5.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
6.
J Hepatol ; 77(1): 15-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167910

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Assuntos
Carnitina O-Palmitoiltransferase , Células Estreladas do Fígado , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colina , Ácidos Graxos/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos
7.
Liver Int ; 40(9): 2172-2181, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462764

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is characterized by chronic cholestasis and inflammation, which promotes cirrhosis and an increased risk of cholangiocellular carcinoma (CCA). The transcription factor Krueppel-like-factor-6 (KLF6) is a mediator of liver regeneration, steatosis, and hepatocellular carcinoma (HCC), but no data are yet available on its potential role in cholestasis. Here, we aimed to identify the impact of hepatic KLF6 expression on cholestatic liver injury and PSC and identify potential effects on farnesoid-X-receptor (FXR) signalling. METHODS: Hepatocellular KLF6 expression was quantified by immunohistochemistry (IHC) in liver biopsies of PSC patients and correlated with serum parameters and clinical outcome. Liver injury was analysed in hepatocyte-specific Klf6-knockout mice following bile duct ligation (BDL). Chromatin-immunoprecipitation-assays (ChIP) and KLF6-overexpressing HepG2 cells were used to analyse the interaction of KLF6 and FXR target genes such as NR0B2. RESULTS: Based on IHC, PSC patients could be subdivided into two groups showing either low (<80%) or high (>80%) hepatocellular KLF6 expression. In patients with high KLF6 expression, we observed a superior survival in Kaplan-Meier analysis. Klf6-knockout mice showed reduced hepatic necrosis following BDL when compared to controls. KLF6 suppressed NR0B2 expression in HepG2 cells mediated through binding of KLF6 to the NR0B2 promoter region. CONCLUSION: Here, we show an association between KLF6 expression and the clinical course and overall survival in PSC patients. Mechanistically, we identified a direct interaction of KLF6 with the FXR target gene NR0B2.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangite Esclerosante , Neoplasias Hepáticas , Animais , Ductos Biliares Intra-Hepáticos , Colangite Esclerosante/genética , Hepatócitos , Humanos , Fator 6 Semelhante a Kruppel , Fígado , Camundongos
8.
Gut ; 68(8): 1477-1492, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872395

RESUMO

OBJECTIVE: There is a striking association between human cholestatic liver disease (CLD) and inflammatory bowel disease. However, the functional implications for intestinal microbiota and inflammasome-mediated innate immune response in CLD remain elusive. Here we investigated the functional role of gut-liver crosstalk for CLD in the murine Mdr2 knockout (Mdr2-/-) model resembling human primary sclerosing cholangitis (PSC). DESIGN: Male Mdr2-/-, Mdr2-/- crossed with hepatocyte-specific deletion of caspase-8 (Mdr2-/- /Casp8∆hepa) and wild-type (WT) control mice were housed for 8 or 52 weeks, respectively, to characterise the impact of Mdr2 deletion on liver and gut including bile acid and microbiota profiling. To block caspase activation, a pan-caspase inhibitor (IDN-7314) was administered. Finally, the functional role of Mdr2-/- -associated intestinal dysbiosis was studied by microbiota transfer experiments. RESULTS: Mdr2-/- mice displayed an unfavourable intestinal microbiota signature and pronounced NLRP3 inflammasome activation within the gut-liver axis. Intestinal dysbiosis in Mdr2-/- mice prompted intestinal barrier dysfunction and increased bacterial translocation amplifying the hepatic NLRP3-mediated innate immune response. Transfer of Mdr2-/- microbiota into healthy WT control mice induced significant liver injury in recipient mice, highlighting the causal role of intestinal dysbiosis for disease progression. Strikingly, IDN-7314 dampened inflammasome activation, ameliorated liver injury, reversed serum bile acid profile and cholestasis-associated microbiota signature. CONCLUSIONS: MDR2-associated cholestasis triggers intestinal dysbiosis. In turn, translocation of endotoxin into the portal vein and subsequent NLRP3 inflammasome activation contribute to higher liver injury. This process does not essentially depend on caspase-8 in hepatocytes, but can be blocked by IDN-7314.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ductos Biliares , Caspase 8/genética , Inibidores de Caspase/farmacologia , Colangite Esclerosante/metabolismo , Progressão da Doença , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Fígado/imunologia , Camundongos , Camundongos Knockout , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
9.
J Pathol ; 247(1): 110-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264435

RESUMO

Ibuprofen is a worldwide used non-steroidal anti-inflammatory drug which may cause acute liver injury (ALI) requiring liver transplantation. We aimed to unveil the molecular pathways involved in triggering ibuprofen-induced ALI, which, at present, remain elusive. First, we investigated activation of essential pathways in human liver sections of ibuprofen-induced ALI. Next, we assessed the cytotoxicity of ibuprofen in vitro and developed a novel murine model of ibuprofen intoxication. To assess the role of JNK, we used animals carrying constitutive deletion of c-Jun N-terminal kinase 1 (Jnk1-/- ) or Jnk2 (Jnk2-/- ) expression and included investigations using animals with hepatocyte-specific Jnk deletion either genetically (Jnk1Δhepa ) or by siRNA (siJnk2Δhepa ). We found in human and murine samples of ibuprofen-induced acute liver failure that JNK phosphorylation was increased in the cytoplasm of hepatocytes and other non-liver parenchymal cells (non-LPCs) compared with healthy tissue. In mice, ibuprofen intoxication resulted in a significantly stronger degree of liver injury compared with vehicle-treated controls as evidenced by serum transaminases, and hepatic histopathology. Next, we investigated molecular pathways. PKCα, AKT, JNK and RIPK1 were significantly increased 8 h after ibuprofen intoxication. Constitutive Jnk1-/- and Jnk2-/- deficient mice exhibited increased liver dysfunction compared to wild-type (WT) animals. Furthermore, siJnk2Δhepa animals showed a dramatic increase in biochemical markers of liver function, which correlated with significantly higher serum liver enzymes and worsened liver histology, and MAPK activation compared to Jnk1Δhepa or WT animals. In our study, cytoplasmic JNK activation in hepatocytes and other non-LPCs is a hallmark of human and murine ibuprofen-induced ALI. Functional in vivo analysis demonstrated a protective role of hepatocyte-specific Jnk2 during ibuprofen ALI. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/enzimologia , Ibuprofeno , Falência Hepática Aguda/prevenção & controle , Fígado/enzimologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Morte Celular , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/patologia , Humanos , Fígado/patologia , Falência Hepática Aguda/enzimologia , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/genética , Fosforilação , Transdução de Sinais
11.
J Hepatol ; 64(3): 628-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576483

RESUMO

BACKGROUND & AIMS: Progression of alcoholic liver disease (ALD) can be influenced by genetic factors, which potentially include specific oncogenes and tumor suppressors. In the present study, we tested the hypothesis that aberrant expression of the proto-oncogene c-myc might exert a crucial role in the development of ALD. METHODS: Expression of c-myc was measured in biopsies of patients with ALD by quantitative real-time PCR and immunohistochemistry. Mice with transgenic expression of c-myc in hepatocytes (alb-myc(tg)) and wild-type (WT) controls were fed either control or ethanol (EtOH) containing Lieber-DeCarli diet for 4weeks to induce ALD. RESULTS: Hepatic c-myc was strongly upregulated in human patients with advanced ALD and in EtOH-fed WT mice. Transcriptome analysis indicated deregulation of pathways involved in ER-stress, p53 signaling, hepatic fibrosis, cell cycle regulation, ribosomal synthesis and glucose homeostasis in EtOH-fed alb-myc(tg) mice. Transgenic expression of c-myc in hepatocytes with simultaneous EtOH-uptake led to early ballooning degeneration, increased liver collagen deposition and hepatic lipotoxicity, together with excessive CYP2E1-derived reactive oxygen species (ROS) production. Moreover, EtOH-fed alb-myc(tg) mice exhibited substantial changes in mitochondrial morphology associated with energy dysfunction. Pathway analysis revealed that elevated c-myc expression and ethanol uptake synergistically lead to strong AKT activation, Mdm2 phosphorylation and as a consequence to inhibition of p53. CONCLUSIONS: Expression of c-myc and EtOH-uptake synergistically accelerate the progression of ALD most likely due to loss of p53-dependent protection. Thus, c-myc is a new potential marker for the early detection of ALD and identification of risk patients.


Assuntos
Genes myc/fisiologia , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/etiologia , Animais , Ciclo Celular , Progressão da Doença , Estresse do Retículo Endoplasmático , Ácidos Graxos não Esterificados/metabolismo , Humanos , Regeneração Hepática , Masculino , Camundongos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/fisiologia
12.
Biochim Biophys Acta ; 1832(10): 1765-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770341

RESUMO

BACKGROUND: Liver fibrosis is a consequence of chronic liver injury and can further progress to hepatocellular carcinoma (HCC). Fibrogenesis involves activation of hepatic stellate cells (HSC) and proliferation of hepatocytes upon liver injury. HCC is frequently associated with overexpression of the proto-oncogene c-myc. However, the impact of c-myc for initiating pathological precursor stages such as liver fibrosis is poorly characterized. In the present study we thus investigated the impact of c-myc for liver fibrogenesis. METHODS: Expression of c-myc was measured in biopsies of patients with liver fibrosis of different etiologies by quantitative real-time PCR (qPCR). Primary HSC were isolated from mice with transgenic overexpression of c-myc in hepatocytes (alb-myc(tg)) and wildtype (WT) controls and investigated for markers of cell cycle progression and fibrosis by qPCR and immunofluorescence microscopy. Liver fibrosis in WT and alb-myc(tg) mice was induced by repetitive CCl4 treatment. RESULTS: We detected strong up-regulation of hepatic c-myc in patients with advanced liver fibrosis. In return, overexpression of c-myc in alb-myc(tg) mice resulted in increased liver collagen deposition and induction of α-smooth-muscle-actin indicating HSC activation. Primary HSC derived from alb-myc(tg) mice showed enhanced proliferation and accelerated transdifferentiation into myofibroblasts in vitro. Accordingly, fibrosis initiation in vivo after chronic CCl4 treatment was accelerated in alb-myc(tg) mice compared to controls. CONCLUSION: Overexpression of c-myc is a novel marker of liver fibrosis in man and mice. We conclude that chronic induction of c-myc especially in hepatocytes has the potential to prime resident HSC for activation, proliferation and myofibroblast differentiation.


Assuntos
Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
13.
Gastroenterology ; 141(6): 2176-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21878202

RESUMO

BACKGROUND & AIMS: Disruption of the nuclear factor-κB (NF-κB) essential modulator (NEMO) in hepatocytes of mice (NEMO(Δhepa) mice) results in spontaneous liver apoptosis and chronic liver disease involving inflammation, steatosis, fibrosis, and development of hepatocellular carcinoma. Activation of caspase-8 (Casp8) initiates death receptor-mediated apoptosis. We investigated the pathogenic role of this protease in NEMO(Δhepa) mice or after induction of acute liver injury. METHODS: We created mice with conditional deletion of Casp8 in hepatocytes (Casp8(Δhepa)) and Casp8(Δhepa)NEMO(Δhepa) double knockout mice. Acute liver injury was induced by Fas-activating antibodies, lipopolysaccharides, or concanavalin A. Spontaneous hepatocarcinogenesis was monitored by magnetic resonance imaging. RESULTS: Hepatocyte-specific deletion of Casp8 protected mice from induction of apoptosis and liver injury by Fas or lipopolysaccharides but increased necrotic damage and reduced survival times of mice given concanavalin A. Casp8(Δhepa)NEMO(Δhepa) mice were protected against steatosis and hepatocarcinogenesis but had a separate, spontaneous phenotype that included massive liver necrosis, cholestasis, and biliary lesions. The common mechanism by which inactivation of Casp8 induces liver necrosis in both injury models involves the formation of protein complexes that included the adaptor protein Fas-associated protein with death domain and the kinases receptor-interacting protein (RIP) 1 and RIP3-these have been shown to be required for programmed necrosis. We demonstrated that hepatic RIP1 was proteolytically cleaved by Casp8, whereas Casp8 inhibition resulted in accumulation of RIP complexes and subsequent liver necrosis. CONCLUSIONS: Inhibition of Casp8 protects mice from hepatocarcinogenesis following chronic liver injury mediated by apoptosis of hepatocytes but can activate RIP-mediated necrosis in an inflammatory environment.


Assuntos
Carcinoma Hepatocelular/enzimologia , Caspase 8/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Animais , Apoptose , Inibidores de Caspase , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatite Animal/enzimologia , Inflamação/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Necrose/enzimologia
14.
J Parasitol ; 97(1): 82-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21348611

RESUMO

We have evaluated the possible mechanisms of liver fibrosis caused by Fasciola hepatica in an animal model and in culture using immortalized human stellate cells. Liver biopsies of F. hepatica-infected rats were performed at wk 8 and 16. Serum-starved LX-2 cells, a human stellate cell line, were exposed to increasing concentrations of Fas2 antigen. The expression of key fibrosis-related genes was evaluated by qRT-PCR. There was a significant correlation between fibrogenic gene expression and both intensity and duration of infection. LX-2 cells exposed to Fas2 showed progressively increased expression of mRNAs for Collagen I, alpha-smooth muscle-actin, platelet-derived growth factor beta receptor, and tissue inhibitor of metalloproteinase II; inhibition of Fas2 cysteine proteinase activity by E-64 abrogated these increases, suggesting that the protease activity of Fas2 is involved in fibrogenic stimulation. In summary, F. hepatica infection is associated with up-regulation of mRNAs associated with hepatic fibrogenesis in vivo and in activated hepatic stellate cells.


Assuntos
Antígenos de Helmintos/metabolismo , Cisteína Endopeptidases/metabolismo , Fasciola hepatica/enzimologia , Fasciolíase/complicações , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/etiologia , Actinas/genética , Análise de Variância , Animais , Linhagem Celular , Colágeno/genética , Modelos Animais de Doenças , Fasciola hepatica/patogenicidade , Fasciolíase/patologia , Expressão Gênica , Humanos , Cirrose Hepática/patologia , Masculino , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Inibidor Tecidual de Metaloproteinase-2/genética
15.
Cells Tissues Organs ; 188(3): 270-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18292650

RESUMO

BACKGROUND/AIM: Currently, when cell therapy is being considered instead of liver transplantation to treat terminal liver diseases, complete knowledge of the evolution and behavior of ectopically transplanted hepatocytes is a subject of utmost interest in the design of clinical trials. Hepatocytes survive in ectopic locations and have a therapeutic effect in different experimental models. Although it offers remarkable advantages over liver transplantation, hepatocyte transplantation presents several problems, among them the number of cells that can be injected at once and their rejection. Our main objective was to study the survival and functionality of hepatocytes transplanted into the thymus and, secondarily, to test whether the intrathymic transplant could induce any tolerogenic effect. METHODS: Hepatocytes from F344 rats were transplanted into thymuses of Gunn rats, half of which received a unique dose of cyclosporine A. The recipients were sacrificed at different times. Light microscopy was performed and bilirubin levels were determined in serum and bile. RESULTS/CONCLUSIONS: Transplanted hepatocytes survive for at least 6 weeks in the thymus of allogeneic animals without immunosuppressive therapy. The work provides interesting data about the behavior of hepatocytes injected into this unique ectopic site and shows that the thymus can be used as a recipient organ for cell therapy.


Assuntos
Sobrevivência de Enxerto , Hepatócitos/transplante , Timo/cirurgia , Animais , Bile/metabolismo , Bilirrubina/sangue , Bilirrubina/metabolismo , Sobrevivência Celular , Hepatócitos/citologia , Ratos , Ratos Gunn , Ratos Endogâmicos F344 , Transplante Homólogo
16.
Dig Dis Sci ; 52(1): 210-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17160715

RESUMO

In the attempt to translate laboratory studies into clinical practice, the small number of cells that can be transplanted is currently a problem to be solved. The aim of this work is to study the functional response of intrasplenically transplanted syngeneic rat adult and fetal hepatocytes to a proliferative stimulus, 3,5,3'-triiodothyronine. Total serum bilirubin significantly decreased from 7 to 90 days after fetal hepatocyte transplantation and from 24 hr to 30 days after adult hepatocyte transplantation. Concomitant with these changes, bile conjugated bilirubin increased from 7 to 90 days after fetal and from 24 hr to 30 days after adult hepatocyte transplantation. In both cases, administration of thyroid hormone enhances this effect. We conclude that although adult and fetal hepatocytes correct the hyperbilirubinemia, fetal cells function longer than adult hepatocytes. Thyroid hormone is a powerful stimulator of function of hepatocytes since it improves both adult and fetal response.


Assuntos
Hepatócitos/transplante , Animais , Bile/química , Bilirrubina/sangue , Transplante de Tecido Fetal , Glucuronosiltransferase/metabolismo , Imuno-Histoquímica , Fígado/embriologia , Ratos , Ratos Gunn , Baço/metabolismo , Hormônios Tireóideos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...