RESUMO
Species delineation in microorganisms is challenging due to the limited markers available for accurate species assignment. Here, we applied an integrative taxonomy approach, combining extensive sampling, whole-genome sequence-based classification, phenotypic profiling, and assessment of interspecific reproductive isolation. Our work reveals the presence of a distinct Saccharomyces lineage in Nothofagus forests of coastal Patagonia. This lineage, designated Saccharomyces chiloensis sp. nov., exhibits 7% genetic divergence from its sister species S. uvarum, as revealed by whole-genome sequencing and population analyses. The South America-C (SA-C) coastal Patagonia population forms a unique clade closely related to a previously described divergent S. uvarum population from Oceania (AUS, found in Australia and New Zealand). Our species reclassification is supported by a low Ortho Average Nucleotide Identity (OANI) of 93% in SA-C and AUS relative to S. uvarum, which falls below the suggested species delineation threshold of 95%, indicating an independent evolutionary lineage. Hybrid spore viability assessment provided compelling evidence that SA-C and AUS are reproductively isolated from S. uvarum. In addition, we found unique structural variants between S. chiloensis sp. nov. lineages, including large-scale chromosomal translocations and inversions, together with a distinct phenotypic profile, emphasizing their intraspecies genetic distinctiveness. We suggest that S. chiloensis sp. nov diverged from S. uvarum in allopatry due to glaciation, followed by post-glacial dispersal, resulting in distinct lineages on opposite sides of the Pacific Ocean. The discovery of S. chiloensis sp. nov. illustrates the uniqueness of Patagonia's coastal biodiversity and underscores the importance of adopting an integrative taxonomic approach in species delineation to unveil cryptic microbial species. The holotype of S. chiloensis sp. nov. is CBS 18620T.
Assuntos
Filogenia , Saccharomyces , Saccharomyces/genética , Saccharomyces/classificação , Sequenciamento Completo do Genoma , Isolamento ReprodutivoRESUMO
Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options.
Assuntos
Cerveja , Fermentação , Hibridização Genética , Saccharomyces cerevisiae , Cerveja/microbiologia , Fermentação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Etanol/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genoma Fúngico , Evolução Molecular , Variação Genética , Maltose/metabolismo , MutaçãoRESUMO
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations (Dromiciops bozinovici) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
Assuntos
Mudança Climática , Hibernação , Marsupiais , Estações do Ano , Animais , Marsupiais/fisiologia , Dinâmica Populacional , Modelos Biológicos , Ecossistema , Metabolismo EnergéticoRESUMO
Four yeast isolates collected from flowers from different ecosystems in Brazil, one from fruit of Nothofagus alpina in Argentina, three from flowers of Neltuma chilensis in Chile and one obtained from the proventriculus of a female bumblebee in Canada were demonstred, by analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domains of the large subunit rRNA gene, to represent two novel species of the genus Starmerella. These species are described here as Starmerella gilliamiae f.a, sp. nov. (CBS 16166T; Mycobank MB 851206) and Starmerella monicapupoae f.a., sp. nov. (PYCC 8997T; Mycobank MB 851207). The results of a phylogenomic analysis using 1037 single-copy orthogroups indicated that S. gilliamiae is a member of a subclade that contains Starmerella opuntiae, Starmerella aceti and Starmerella apicola. The results also indicated that S. monicapupoae is phylogenetically related to Starmerella riodocensis. The two isolates of S. monicapupoae were obtained from flowers in Brazil and were probably vectored by insects that visit these substrates. Starmerella gilliamiae has a wide geographical distribution having been isolated in flowers from Brazil and Chile, fruit from Argentina and a bumblebee from Canada.
Assuntos
Ecossistema , Saccharomycetales , Animais , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética , InsetosRESUMO
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , RNA Viral/genética , RNA Viral/análise , Pandemias , Técnicas de Laboratório Clínico/métodos , Sensibilidade e EspecificidadeRESUMO
Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease (PUT4) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae, overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri, a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments.
Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/genética , Domesticação , Saccharomycetales/genética , Bebidas Alcoólicas , Translocação GenéticaRESUMO
In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.
Assuntos
Saccharomycetales , Vinho , Fermentação , Filogenia , Saccharomycetales/genética , Pichia/genética , Sequência de Bases , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Espaçador Ribossômico/genéticaRESUMO
Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEEH) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, ß), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (ßDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (ßFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators.
Assuntos
Hibernação , Marsupiais , Humanos , Animais , Marsupiais/metabolismo , Mamíferos , Metabolismo Energético , Composição CorporalRESUMO
Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.
Assuntos
Brettanomyces , Saccharomyces , Saccharomycetales , Fermentação , Saccharomyces/genética , Saccharomycetales/genéticaRESUMO
The study of natural variation can untap novel alleles with immense value for biotechnological applications. Saccharomyces eubayanus Patagonian isolates exhibit differences in the diauxic shift between glucose and maltose, representing a suitable model to study their natural genetic variation for novel strains for brewing. However, little is known about the genetic variants and chromatin regulators responsible for these differences. Here, we show how genome-wide chromatin accessibility and gene expression differences underlie distinct diauxic shift profiles in S. eubayanus. We identified two strains with a rapid diauxic shift between glucose and maltose (CL467.1 and CBS12357) and one strain with a remarkably low fermentation efficiency and longer lag phase during diauxic shift (QC18). This is associated in the QC18 strain with lower transcriptional activity and chromatin accessibility of specific genes of maltose metabolism and higher expression levels of glucose transporters. These differences are governed by the HAP complex, which differentially regulates gene expression depending on the genetic background. We found in the QC18 strain a contrasting phenotype to those phenotypes described in S. cerevisiae, where hap4Δ, hap5Δ, and cin5Δ knockouts significantly improved the QC18 growth rate in the glucose-maltose shift. The most profound effects were found between CIN5 allelic variants, suggesting that Cin5p could strongly activate a repressor of the diauxic shift in the QC18 strain but not necessarily in the other strains. The differences between strains could originate from the tree host from which the strains were obtained, which might determine the sugar source preference and the brewing potential of the strain. IMPORTANCE The diauxic shift has been studied in budding yeast under laboratory conditions; however, few studies have addressed the diauxic shift between carbon sources under fermentative conditions. Here, we study the transcriptional and chromatin structure differences that explain the natural variation in fermentative capacity and efficiency during diauxic shift of natural isolates of S. eubayanus. Our results show how natural genetic variants in transcription factors impact sugar consumption preferences between strains. These variants have different effects depending on the genetic background, with a contrasting phenotype to those phenotypes previously described in S. cerevisiae. Our study shows how relatively simple genetic/molecular modifications/editing in the lab can facilitate the study of natural variations of microorganisms for the brewing industry.
Assuntos
Maltose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Maltose/metabolismo , Cerveja , Glucose , CromatinaRESUMO
We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.
Assuntos
Saccharomyces cerevisiae , Pesquisa Translacional Biomédica , Animais , Mapeamento Cromossômico , Patrimônio Genético , Genoma , Humanos , Camundongos , Saccharomyces cerevisiae/genéticaRESUMO
Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.
Assuntos
Variação Genética , Saccharomyces cerevisiae , Humanos , Haplótipos , Austrália , FilogeniaRESUMO
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Assuntos
Saccharomyces cerevisiae , Saccharomyces , Cerveja , Fermentação , Haploidia , Saccharomyces/genética , Saccharomyces cerevisiae/genéticaRESUMO
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time-course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off-flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in 'fast motion' in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.
Assuntos
Etanol , Fermentação , Saccharomyces , Etanol/metabolismo , Hibridização Genética , Saccharomyces/genéticaRESUMO
The quest for new wild yeasts has increasingly gained attention because of their potential ability to provide unique organoleptic characters to fermented beverages. In this sense, Patagonia offers a wide diversity of ethanol-tolerant yeasts and stands out as a bioprospecting alternative. This study characterized the genetic and phenotypic diversity of yeast isolates obtained from Central Chilean Patagonia and analyzed their fermentation potential under different fermentative conditions. We recovered 125 colonies from Nothofagus spp. bark samples belonging to five yeast species: Saccharomyces eubayanus, Saccharomyces uvarum, Lachancea cidri, Kregervanrija delftensis, and Hanseniaspora valbyensis. High-throughput microcultivation assays demonstrated the extensive phenotypic diversity among Patagonian isolates, where Saccharomyces spp and L. cidri isolates exhibited the most outstanding fitness scores across the conditions tested. Fermentation performance assays under wine, mead, and beer conditions demonstrated the specific potential of the different species for each particular beverage. Saccharomyces spp. were the only isolates able to ferment beer wort. Interestingly, we found that L. cidri is a novel candidate species to ferment wine and mead, exceeding the fermentation capacity of a commercial strain. Unlike commercial strains, we found that L. cidri does not require nutritional supplements for efficient mead fermentation. In addition, L. cidri produces succinic and acetic acids, providing a distinct profile to the final fermented product. This work demonstrates the importance of bioprospecting efforts in Patagonia to isolate novel wild yeast strains with extraordinary biotechnological potential for the fermentation industry.
Assuntos
Etanol , Vinho , Cerveja , Fermentação , Vinho/análise , LevedurasRESUMO
Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 µg/mL or DS 50 µg/mL plus olanzapine 50 µg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.
Assuntos
Antocianinas/farmacologia , Elaeocarpaceae/metabolismo , Glucosídeos/farmacologia , Antocianinas/química , Antocianinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/metabolismo , Glucosídeos/química , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Olanzapina , Extratos Vegetais/farmacologia , Polifenóis/farmacologiaRESUMO
Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism among natural yeast populations has been reported, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq (assay for transposase accessible chromatin) and RNA-seq (transcriptome sequencing). We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the nitrogen catabolite repression regulatory pathway and demonstrates a cis × environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility, and allelic differences in transcription factor binding in response to low nitrogen culture conditions. IMPORTANCE Historically, coding variants were prioritized when searching for causal mechanisms driving adaptation of natural populations to stressful environments. However, the recent focus on noncoding variants demonstrated their ubiquitous role in adaptation. Here, we performed genome-wide regulatory variation profiles between two divergent yeast strains when facing nitrogen nutritional stress. The open chromatin availability of several regulatory regions changes in response to nitrogen scarcity. Importantly, we describe regulatory events that deviate between strains. Our results demonstrate a widespread variation in gene expression regulation between naturally occurring populations in response to stressful environments.
RESUMO
The continuous usage of single Saccharomyces cerevisiae strains as starter cultures in fermentation led to the domestication and propagation of highly specialized strains in fermentation, resulting in the standardization of wines and beers. In this way, hundreds of commercial strains have been developed to satisfy producers' and consumers' demands, including beverages with high/low ethanol content, nutrient deprivation tolerance, diverse aromatic profiles, and fast fermentations. However, studies in the last 20 years have demonstrated that the genetic and phenotypic diversity in commercial S. cerevisiae strains is low. This lack of diversity limits alternative wines and beers, stressing the need to explore new genetic resources to differentiate each fermentation product. In this sense, wild strains harbor a higher than thought genetic and phenotypic diversity, representing a feasible option to generate new fermentative beverages. Numerous recent studies have identified alleles in wild strains that could favor phenotypes of interest, such as nitrogen consumption, tolerance to cold or high temperatures, and the production of metabolites, such as glycerol and aroma compounds. Here, we review the recent literature on the use of commercial and wild S. cerevisiae strains in wine and beer fermentation, providing molecular evidence of the advantages of using wild strains for the generation of improved genetic stocks for the industry according to the product style.
RESUMO
Autochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typical Vitis vinifera L. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly, Saccharomyces represented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution of S. uvarum (42.7%) and S. cerevisiae (80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, only Metschnikowia pulcherrima could co-exist with a commercial Saccharomyces cerevisiae strain under fermentative conditions, representing a feasible candidate strain for wine production.
RESUMO
In the past decade, the sequencing of large cohorts of Saccharomyces cerevisiae strains has revealed a landscape of genomic regions acquired by Horizontal Gene Transfer (HGT). The genes acquired by HGT play important roles in yeast adaptation to the fermentation process, improving nitrogen and carbon source utilization. However, the functional characterization of these genes at the molecular level has been poorly attended. In this work, we carried out a systematic analysis of the promoter activity and protein level of 30 genes contained in three horizontally acquired regions commonly known as regions A, B, and C. In three strains (one for each region), we used the luciferase reporter gene and the mCherry fluorescent protein to quantify the transcriptional and translational activity of these genes, respectively. We assayed the strains generated in four different culture conditions; all showed low levels of transcriptional and translational activity across these environments. However, we observed an increase in protein levels under low nitrogen culture conditions, suggesting a possible role of the horizontally acquired genes in the adaptation to nitrogen-limited environments. Furthermore, since the strains carrying the luciferase reporter gene are null mutants for the horizontally acquired genes, we assayed growth parameters (latency time, growth rate, and efficiency) and the fermentation kinetics in this set of deletion strains. The results showed that single deletion of 20 horizontally acquired genes modified the growth parameters, whereas the deletion of five of them altered the maximal CO2 production rate (Vmax). Interestingly, we observed a correlation between growth parameters and Vmax for an ORF within region A, encoding an ortholog to a thiamine (vitamin B1) transporter whose deletion decreased the growth rate, growth efficiency, and CO2 production. Altogether, our results provided molecular and phenotypic evidence highlighting the importance of horizontally acquired genes in yeast adaptation to fermentative environments.