Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 55(5): 1011-1027, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31222742

RESUMO

Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll-a fluorescence-based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400-700 nm) and PAR+ ultraviolet (UV) radiation (280-700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P-I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2-fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.


Assuntos
Clorófitas , Ulva , Aclimatação , Chile , Fotossíntese , Raios Ultravioleta
2.
Photosynth Res ; 131(2): 145-157, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27620461

RESUMO

Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central-southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation. Major findings were that F v/F m, photosynthetic parameters (ETRmax, alpha, E k) and pigments in L. spicata showed an inverse relationship to the diurnal changes in solar radiation. Phlorotannins levels and antioxidant activity showed their highest values in treatment that included UV radiation. There was an increase in SOD and APX in relation at light stress, with a peak in activity between 5.2 and 10.1 W m-2 of biologically effective dose. The increase in peroxidative damage was proportional to light dose. These results indicated that different light doses can trigger a series of complementary mechanisms of acclimation in L. spicata based on: (i) down-regulation of photochemistry activity and decrease in concentration of photosynthetic pigments; (ii) induction of phenolic compounds with specific UV-screening functions; and (iii) reactive oxygen species (ROS) scavenging activity via complementary repair of the oxidative damage through increased activity of antioxidant enzymes and potentially increased amounts of phenolic compounds.


Assuntos
Ritmo Circadiano , Phaeophyceae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/metabolismo , Raios Ultravioleta , Regulação para Baixo , Peroxidação de Lipídeos , Phaeophyceae/metabolismo , Fotossíntese , Pigmentos Biológicos/metabolismo , Espectrometria de Fluorescência
3.
J Photochem Photobiol B ; 149: 280-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26117416

RESUMO

The photoprotective role of mycosporine-like amino acids (MAA) against the generation of DNA cyclobutane pyrimidine dimers (CPD) was studied in the sessile intertidal anemone Actinia tenebrosa and the mobile intertidal gastropod Diloma aethiops through 27months at a mid-latitude New Zealand location. MAA were sequestered by A. tenebrosa and D. aethiops from their diet, although maximum total MAA levels in both species were not correlated with seasonal variation in maximum ambient UV-B levels recorded at the collection site. Temporal changes in total MAA in A. tenebrosa showed a six months lag-time in their concentration regarding to the environmental UV-B levels. This lag period corresponded to an observed increase in CPD production from spring to summer; suggesting that MAA do not completely protect the anemone from UV-B during summer. For D. aethiops, total MAA concentrations did not change significantly during the study, although qualitative changes in MAA were apparent. A month lag-time in MAA concentration in D. aethiops and possibly the physical barrier that the shell confers to the animal, can explain reduced CPD levels in comparative terms with A. tenebrosa. Although MAA are used by invertebrates for photoprotection, contrasting mobility characteristics and the presence of physical adaptations can confer them important protection levels during temporal changes of UV-B at mid-latitude places of the Southern Hemisphere.


Assuntos
Aminoácidos/metabolismo , Dano ao DNA , Gastrópodes/genética , Gastrópodes/efeitos da radiação , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Adaptação Fisiológica , Animais , Gastrópodes/metabolismo , Gastrópodes/fisiologia , Movimento/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...