Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0186299, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023516

RESUMO

Djungarian hamsters are able to use spontaneous daily torpor (SDT) during the winter season as well as fasting-induced torpor (FIT) at any time of the year to cope with energetically challenging environmental conditions. Torpor is a state of severely reduced metabolism with a pronounced decrease in body temperature, which enables animals to decrease their individual energy requirements. Despite sharing common characteristics, such as reduced body mass before first torpor expression and depressed metabolism and body temperature during the torpid state, FIT and SDT differ in several physiological properties including torpor bout duration, minimal body temperature, fuel utilization and circadian organization. It remains unclear, whether SDT and FIT reflect the same phenomenon or two different physiological states. The hypothalamus has been suggested to play a key role in regulating energy balance and torpor. To uncover differences in molecular control mechanisms of torpor expression, we set out to investigate hypothalamic gene expression profiles of genes related to orexigenic (Agrp/Npy), circadian clock (Bmal1/Per1) and thyroid hormone (Dio2/Mct8) systems of animals undergoing SDT and FIT during different torpor stages. Orexigenic genes were mainly regulated during FIT and remained largely unaffected by SDT. Expression patterns of clock genes showed disturbed circadian clock rhythmicity in animals undergoing FIT, but not in animals undergoing SDT. During both, SDT and FIT, decreased Dio2 expression was detected, indicating reduced hypothalamic T3 availability in both types of torpor. Taken together, our results provide evidence that SDT and FIT also differ in certain central control mechanisms and support the observation that animals undergoing SDT are in energetical balance, whereas animals undergoing FIT display a negative energy balance. This should be carefully taken into account when interpreting data in torpor research, especially from animal models of fasting-induced hypometabolism such as mice.


Assuntos
Hipotálamo/metabolismo , Phodopus/metabolismo , Torpor/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Temperatura Corporal , Ritmo Circadiano/genética , Cricetinae , Metabolismo Energético , Jejum , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Transcriptoma , Iodotironina Desiodinase Tipo II
2.
J Comp Physiol B ; 187(5-6): 857-868, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28365894

RESUMO

Thyroid hormones play an important role in regulating seasonal adaptations of mammals. Several studies suggested that reduced availability of 3,3',5-triiodothyronine (T3) in the hypothalamus is required for the physiological adaptation to winter in Djungarian hamsters. We have previously shown that T3 is involved in the regulation of daily torpor, but it remains unclear, whether T3 affects torpor by central or peripheral mechanisms. To determine the effect of T3 concentrations within the hypothalamus in regulating daily torpor, we tested the hypothesis that low hypothalamic T3 metabolism would favour torpor and high T3 concentrations would not. In experiment 1 gene expression in torpid hamsters was assessed for transporters carrying thyroid hormones between cerebrospinal fluid and hypothalamic cells and for deiodinases enzymes, activating or inactivating T3 within hypothalamic cells. Gene expression analysis suggests reduced T3 in hypothalamic cells during torpor. In experiment 2, hypothalamic T3 concentrations were altered via microdialysis and torpor behaviour was continuously monitored by implanted body temperature transmitters. Increased T3 concentrations in the hypothalamus reduced expression of torpor as well as torpor bout duration and depth. Subsequent analysis of gene expression in the ependymal layer of the third ventricle showed clear up-regulation of T3 inactivating deiodinase 3 but no changes in several other genes related to photoperiodic adaptations in hamsters. Finally, serum analysis revealed that increased total T3 serum concentrations were not necessary to inhibit torpor expression. Taken together, our results are consistent with the hypothesis that T3 availability within the hypothalamus significantly contributes to the regulation of daily torpor via a central pathway.


Assuntos
Hipotálamo/fisiologia , Phodopus/genética , Phodopus/fisiologia , Torpor/fisiologia , Tri-Iodotironina/fisiologia , Animais , Regulação da Expressão Gênica , Masculino , Microdiálise , Tiroxina/sangue , Tiroxina/fisiologia , Tri-Iodotironina/sangue
3.
Front Neurosci ; 11: 122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348515

RESUMO

Animals living at high or temperate latitudes are challenged by extensive changes in environmental conditions over seasons. Djungarian hamsters (Phodopus sungorus) are able to cope with extremely cold ambient temperatures and food scarcity in winter by expressing spontaneous daily torpor. Daily torpor is a circadian controlled voluntary reduction of metabolism that can reduce energy expenditure by up to 65% when used frequently. In the past decades it has become more and more apparent, that the hypothalamus is likely to play a key role in regulating induction and maintenance of daily torpor, but the molecular signals, which lead to the initiation of daily torpor, are still unknown. Here we present the first transcriptomic study of hypothalamic gene expression patterns in Djungarian hamsters during torpor entrance. Based on Illumina sequencing we were able to identify a total number of 284 differentially expressed genes, whereby 181 genes were up- and 103 genes down regulated during torpor entrance. The 20 most up regulated group contained eight genes coding for structure proteins, including five collagen genes, dnha2 and myo15a, as well as the procoagulation factor vwf. In a proximate approach we investigated these genes by quantitative real-time PCR (qPCR) analysis over the circadian cycle in torpid and normothermic animals at times of torpor entrance, mid torpor, arousal and post-torpor. These qPCR data confirmed up regulation of dnah2, myo15a, and vwf during torpor entrance, but a decreased mRNA level for all other investigated time points. This suggests that gene expression of structure genes as well as the procoagulation factor are specifically initiated during the early state of torpor and provides evidence for protective molecular adaptions in the hypothalamus of Djungarian hamsters including changes in structure, transport of biomolecules and coagulation.

4.
Physiology (Bethesda) ; 31(1): 51-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26674551

RESUMO

Siberian hamsters use spontaneous daily torpor, a state of hypometabolism and hypothermia, to save energy during winter. Multiple neuroendocrine signals set the scene for spontaneous torpor to occur, and several brain areas have been identified as potential sites for torpor regulation. Here, we summarize the known mechanisms of a fascinating physiological state in the Siberian hamster.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Phodopus/fisiologia , Torpor/fisiologia , Animais , Hipotermia/fisiopatologia , Estações do Ano
5.
Biochem Biophys Res Commun ; 441(3): 624-9, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24177009

RESUMO

Animals in many aquatic ecosystems must cope with changing environmental parameters, such as temperature, oxygen availability or pH. We have investigated the molecular responses to acidification in the gills and body of zebrafish (Danio rerio) by means of quantitative real-time PCR. Expression levels of typical stress genes and genes for antioxidant defense were strongly enhanced in gills, and to lesser extents in the body, suggesting that acidification leads to oxidative stress. Surprisingly, the globins were found to be among the most prominent stress-responsive proteins in our study. Myoglobin showed the strongest response of all investigated genes in the gills, as confirmed by Western blotting. These findings agree with the role of globins in oxidative energy metabolism, but may also hint at a specific function in antioxidative defense.


Assuntos
Água Doce/química , Expressão Gênica , Interação Gene-Ambiente , Brânquias/fisiologia , Globinas/genética , Estresse Oxidativo/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Ácidos/química , Animais , Concentração de Íons de Hidrogênio , Mioglobina/genética , Proteínas do Tecido Nervoso/genética , Neuroglobina , RNA Mensageiro/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA