Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(7): 072502, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213578

RESUMO

Excited states in ^{10}B were populated with the ^{10}B(p,p^{'}γ)^{10}B^{*} reaction at 8.5 MeV and their γ decay was investigated via coincidence γ-ray spectroscopy. The emitted γ rays were measured using large-volume LaBr_{3}:Ce and CeBr_{3} detectors placed in anti-Compton shields. This allowed the observation of weak γ-ray transitions, such as the M3 transition between the J^{π},T=0^{+},1 isobaric analog state (IAS) and the J^{π},T=3^{+},0 ground state and the E2 transition between the J^{π},T=2_{1}^{+},0 state and the IAS, i.e., performing measurements of branching ratios at the level of λ≥10^{-4}. For the first time in ^{10}B, the competing M1 and M3 transitions from the decay of the IAS have been observed in a γ spectroscopy experiment. The experimental results are compared with ab initio no-core shell model calculation using the newest version of the local position-space chiral N^{3}LO nucleon-nucleon interaction. The calculations reproduce correctly the ordering of the bound states in ^{10}B, and are in reasonable agreement with the observed branching ratios and reduced transition probabilities.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065134

RESUMO

We present the design and absolute calibration of a charged particle online readout CMOS system tailored for high-power laser experiments. This system equips a Thomson parabola spectrometer, which is used at the Apollon petawatt scale laser facility to measure the spectra of protons produced by high-intensity laser-target interactions. The RadEye1 CMOS matrices array detectors are paired with a custom triggering system for image grabbing. This allows us to register the proton and ion signals remotely. The repetition rate is presently 1 shot/min, but the frame grabbing enables the system to be compatible with modern high-power lasers running, e.g., at 1 Hz. We detail here the implementation, in the harsh electromagnetic environment of such interactions, of the system, and its absolute calibration, which was performed for proton energies from 4 to 20 MeV.

3.
Appl Radiat Isot ; 191: 110559, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36413938

RESUMO

We have designed and constructed a high-energy γ-ray source for detector characterisation and calibration. The source is a composite type based on a plutonium-beryllium neutron emitter embedded in a paraffin moderator, which is homogeneously mixed with nickel powder. The 9 MeV γ-ray source produces approximately 450 photons per second in 4π when 2.2×105 neutrons per second are emitted, corresponding to a surface flux of 9 MeV γ-rays of approximately 2.5×10-6 cm-2 per emitted neutron. Here we discuss the properties and design of this source, including the characterisation of homogeneity and high-energy γ-ray emission spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA