Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 113966, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507408

RESUMO

Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1). Our results demonstrate that repeated stimulation leads to a refinement of V1 circuitry by decreasing the number of responsive neurons while potentiating their response. At the synaptic level, we observe a reduction in the number of dendritic spines and an overall increase in spine AMPA receptor levels in the same subset of neurons. In addition, visual stimulation induces synaptic potentiation in neighboring spines within individual dendrites. These findings provide insights into the mechanisms of synaptic plasticity underlying information processing in the neocortex.


Assuntos
Espinhas Dendríticas , Plasticidade Neuronal , Córtex Visual Primário , Animais , Plasticidade Neuronal/fisiologia , Camundongos , Córtex Visual Primário/fisiologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Receptores de AMPA/metabolismo , Estimulação Luminosa , Camundongos Endogâmicos C57BL , Sinapses/fisiologia , Sinapses/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Córtex Visual/fisiologia
2.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405910

RESUMO

Mammalian parenting is an unusually demanding commitment. How did evolution co-opt the reward system to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient mouse dams. We show that kainic acid lesions of the LHb induced a severe maternal neglect phenotype in dams towards their biological pups. Next, we demonstrate that through chronic chemogenetic inactivation of the LHb using DREADDs impaired acquisition and performance of various maternal behaviors, such as pup retrieval and nesting. We present a random intercepts model suggesting LHb-inactivation prevents the acquisition of the novel pup retrieval maternal behavior and decreases nest building performance, an already-established behavior, in primiparous mouse dams. Lastly, we examine the spatial histology of kainic-acid treated dams with a random intercepts model, which suggests that the role of LHb in maternal behavior may be preferentially localized at the posterior aspect of this structure. Together, these findings serve to establish the LHb as required for maternal behavior in the mouse dam, thereby complementing previous findings implicating the LHb in parental behavior using pup-sensitized virgin female mice.

3.
Biophys J ; 123(7): 759-769, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38419330

RESUMO

The analysis of action potentials and other membrane voltage fluctuations provides a powerful approach for interrogating the function of excitable cells. However, a major bottleneck in the interpretation of this critical data is the lack of intuitive, agreed-upon software tools for its analysis. Here, we present SanPy, an open-source and freely available software package for the analysis and exploration of whole-cell current-clamp recordings written in Python. SanPy provides a robust computational engine with an application programming interface. Using this, we have developed a cross-platform desktop application with a graphical user interface that does not require programming. SanPy is designed to extract common parameters from action potentials, including threshold time and voltage, peak, half-width, and interval statistics. In addition, several cardiac parameters are measured, including the early diastolic duration and rate. SanPy is built to be fully extensible by providing a plugin architecture for the addition of new file loaders, analysis, and visualizations. A key feature of SanPy is its focus on quality control and data exploration. In the desktop interface, all plots of the data and analysis are linked, allowing simultaneous data visualization from different dimensions with the goal of obtaining ground-truth analysis. We provide documentation for all aspects of SanPy, including several use cases and examples. To test SanPy, we performed analysis on current-clamp recordings from heart and brain cells. Taken together, SanPy is a powerful tool for whole-cell current-clamp analysis and lays the foundation for future extension by the scientific community.


Assuntos
Software , Interface Usuário-Computador , Coração , Encéfalo
4.
Front Neurosci ; 17: 1222644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583418

RESUMO

Over the last two decades a growing number of neuroscience labs are conducting behavioral assays in rodents. The equipment used to collect this behavioral data must effectively limit environmental and experimenter disruptions, to avoid confounding behavior data. Proprietary behavior boxes are expensive, offer limited compatible sensors, and constrain analysis with closed-source hardware and software. Here, we introduce PiE, an open-source, end-to-end, user-configurable, scalable, and inexpensive behavior assay system. The PiE system includes the custom-built behavior box to hold a home cage, as well as software enabling continuous video recording and individual behavior box environmental control. To limit experimental disruptions, the PiE system allows the control and monitoring of all aspects of a behavioral experiment using a remote web browser, including real-time video feeds. To allow experiments to scale up, the PiE system provides a web interface where any number of boxes can be controlled, and video data easily synchronized to a remote location. For the scoring of behavior video data, the PiE system includes a standalone desktop application that streamlines the blinded manual scoring of large datasets with a focus on quality control and assay flexibility. The PiE system is ideal for all types of behavior assays in which video is recorded. Users are free to use individual components of this setup independently, or to use the entire pipeline from data collection to analysis. Alpha testers have included scientists without prior coding experience. An example pipeline is demonstrated with the PiE system enabling the user to record home cage maternal behavior assays, synchronize the resulting data, conduct blinded scoring, and import the data into R for data visualization and analysis.

5.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37503184

RESUMO

Brightest path tracing is a widely used image processing technique in several fields including biology, geography, and geology. However, despite the availability of many image processing libraries in Python, few offer an out-of-the-box implementation of a brightest path tracing algorithm. This paper presents a Python package, brightest-path-lib, that efficiently finds the path with maximum brightness between points in a 2D or 3D image. An example graphical user interface is provided as a Napari plugin. Taken together, the package and plugin provide a powerful and extensible tool for users to efficiently trace structures of interest in 2D or 3D images, regardless of the type of structure being analyzed.

6.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37214972

RESUMO

The analysis of action potentials and other membrane voltage fluctuations provide a powerful approach for interrogating the function of excitable cells. Yet, a major bottleneck in the interpretation of this critical data is the lack of intuitive, agreed upon software tools for its analysis. Here, we present SanPy, a Python-based open-source and freely available software pipeline for the analysis and exploration of whole-cell current-clamp recordings. SanPy provides a robust computational engine with an application programming interface. Using this, we have developed a cross-platform graphical user interface that does not require programming. SanPy is designed to extract common parameters from action potentials including threshold time and voltage, peak, half-width, and interval statistics. In addition, several cardiac parameters are measured including the early diastolic duration and rate. SanPy is built to be fully extensible by providing a plugin architecture for the addition of new file loaders, analysis, and visualizations. A key feature of SanPy is its focus on quality control and data exploration. In the desktop interface, all plots of the data and analysis are linked allowing simultaneous data visualization from different dimensions with the goal of obtaining ground truth analysis. We provide documentation for all aspects of SanPy including several use cases and examples. To test SanPy, we have performed analysis on current-clamp recordings from heart and brain cells. Taken together, SanPy is a powerful tool for whole-cell current-clamp analysis and lays the foundation for future extension by the scientific community.

8.
J Gen Physiol ; 154(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35482009

RESUMO

Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Cálcio/metabolismo , Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Reprodutibilidade dos Testes , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
9.
Function (Oxf) ; 2(4): zqab031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250490

RESUMO

The cardiac cycle starts when an action potential is produced by pacemaking cells in the sinoatrial node. This cycle is repeated approximately 100 000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sinoatrial node is poorly understood. Here, we tested the hypothesis that the organization of the sinoatrial node microvasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sinoatrial node. Accordingly, sinoatrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sinoatrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sinoatrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the microvascular densities vary regionally within the sinoatrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sinoatrial node places myocytes with metabolically demanding, high-frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sinoatrial node myocytes could limit these cells to function to support sinoatrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Humanos , Animais , Camundongos , Potenciais de Ação/fisiologia , Periodicidade , Microvasos
10.
Aging (Albany NY) ; 12(5): 4299-4321, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155129

RESUMO

Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion in vivo for 28 days. Using in vivo two-photon microscopy in the mouse somatosensory cortex, we found that the average frequency of Ca2+ transients in the spine (there was an unusual synchrony) was higher after 15 min of ischemia-reperfusion. In addition, the transient ischemia-reperfusion caused a reflective enhancement of AMPARs, which eventually restored to normal. The cortical hyperactivity (Ca2+ transients) and the increase in AMPARs were successfully blocked by an NMDA receptor antagonist. Thus, the increase of AMPARs, cortical hyperactivity and the unusual synchrony might be the reason for reperfusion injury after short-term transient ischemia.


Assuntos
Espinhas Dendríticas/metabolismo , Receptores de AMPA/metabolismo , Traumatismo por Reperfusão/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Camundongos , Neurônios/metabolismo , Transporte Proteico/fisiologia
11.
Elife ; 92020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125273

RESUMO

Regulation of AMPA receptor (AMPAR) expression is central to synaptic plasticity and brain function, but how these changes occur in vivo remains elusive. Here, we developed a method to longitudinally monitor the expression of synaptic AMPARs across multiple cortical layers in awake mice using two-photon imaging. We observed that baseline AMPAR expression in individual spines is highly dynamic with more dynamics in primary visual cortex (V1) layer 2/3 (L2/3) neurons than V1 L5 neurons. Visual deprivation through binocular enucleation induces a synapse-specific and depth-dependent change of synaptic AMPARs in V1 L2/3 neurons, wherein deep synapses are potentiated more than superficial synapses. The increase is specific to L2/3 neurons and absent on apical dendrites of L5 neurons, and is dependent on expression of the AMPAR-binding protein GRIP1. Our study demonstrates that specific neuronal connections, across cortical layers and even within individual neurons, respond uniquely to changes in sensory experience.


Assuntos
Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Eletroporação , Feminino , Ácido Glutâmico/metabolismo , Hipocampo , Camundongos , Técnicas de Patch-Clamp , Gravidez , Ratos , Receptores de AMPA/genética , Córtex Visual/citologia , Córtex Visual/metabolismo
12.
Neuron ; 105(5): 895-908.e5, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901303

RESUMO

Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions.


Assuntos
Espinhas Dendríticas/metabolismo , Aprendizagem , Atividade Motora , Córtex Motor/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Córtex Visual/metabolismo , Animais , Membro Anterior , Microscopia Intravital , Camundongos , Microscopia de Fluorescência , Optogenética , Transporte Proteico , Desempenho Psicomotor , Análise Espaço-Temporal
13.
J Neurosci ; 39(25): 4874-4888, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30992373

RESUMO

Surgical ovariectomy has been shown to reduce spine density in hippocampal CA1 pyramidal cells of rodents, and this reduction is reversed by 17ß-estradiol (E2) treatment in a model of human estrogen replacement therapy. Here, we report reduction of spine density in apical dendrites of layer 5 pyramidal neurons of several neocortical regions that is reversed by subsequent E2 treatment in ovariectomized (OVX) female Thy1M-EGFP mice. We also found that OVX-associated reduction of spine density in somatosensory cortex was accompanied by a reduction in miniature EPSC (mEPSC) frequency (but not mIPSC frequency), indicating a change in functional synapses. OVX-associated spine loss in somatosensory cortex was also rescued by an agonist of the G-protein-linked estrogen receptor (GPER) but not by agonists of the classic estrogen receptors ERα/ERß, whereas the opposite selectivity was found in area CA1. Acute treatment of neocortical slices with E2 also rescued the OVX-associated reduction in mEPSC frequency, which could be mimicked by a GPER agonist and abolished by a GPER antagonist. Time-lapse in vivo two-photon imaging showed that OVX-associated reduction in spine density is achieved by both an increase in spine loss rate and a decrease in spine gain rate and that subsequent rescue by E2 reversed both of these processes. Crucially, the spines added after E2 rescue were no more likely to reappear at or nearby the sites of pre-OVX spines than those in control mice treated with vehicle. Thus, a model of estrogen replacement therapy, although restoring spine density and dynamics, does not entirely restore functional connectivity.SIGNIFICANCE STATEMENT Estrogen replacement therapy following menopause or surgical removal of the ovaries is a widespread medical practice, yet little is known about the consequences of such treatment for cells in the brain. Here, we show that estrogen replacement reverses some of the effects of surgical removal of the ovaries on the structure and function of brain cells in the mouse. Yet, importantly, the fine wiring of the brain is not returned to the presurgery state by estrogen treatment, suggesting lasting functional consequences.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Estradiol/farmacologia , Neocórtex/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Animais , Espinhas Dendríticas/metabolismo , Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Camundongos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neocórtex/citologia , Neocórtex/metabolismo , Ovariectomia , Células Piramidais/citologia , Células Piramidais/metabolismo
14.
J Cereb Blood Flow Metab ; 37(12): 3725-3743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28059584

RESUMO

The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.


Assuntos
Capilares/ultraestrutura , Córtex Motor/irrigação sanguínea , Condicionamento Físico Animal , Animais , Capilares/citologia , Circulação Cerebrovascular , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/fisiologia , Pericitos/citologia , Pericitos/ultraestrutura
15.
Neuron ; 91(4): 748-762, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27499084

RESUMO

It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests.


Assuntos
Axônios/fisiologia , Lesões Encefálicas/patologia , Neocórtex/citologia , Neocórtex/fisiologia , Regeneração Nervosa/fisiologia , Neurônios Serotoninérgicos/fisiologia , Animais , Lesões Encefálicas/fisiopatologia , Camundongos , Camundongos Transgênicos , Neocórtex/patologia , Reflexo de Sobressalto/fisiologia , Degeneração Retrógrada/induzido quimicamente , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/patologia , Imagem com Lapso de Tempo , p-Cloroanfetamina/toxicidade
16.
Nat Neurosci ; 18(3): 402-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643295

RESUMO

Regulation of AMPA receptor (AMPAR) membrane trafficking is critical for synaptic plasticity, as well as for learning and memory. However, the mechanisms of AMPAR trafficking in vivo remain elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stimulation led to a significant increase in the intensity of surface AMPAR GluA1 subunit (sGluA1) in both spines and dendritic shafts and a small increase in spine size relative to prestimulation values. Interestingly, the initial spine properties biased spine changes following whisker stimulation. Changes in spine sGluA1 intensity were positively correlated with changes in spine size and dendritic shaft sGluA1 intensity following whisker stimulation. The increase in spine sGluA1 intensity evoked by whisker stimulation was NMDA receptor dependent and long lasting, similar to major forms of synaptic plasticity in the brain. In this study we were able to observe experience-dependent AMPAR trafficking in real time and characterize, in vivo, a major form of synaptic plasticity in the brain.


Assuntos
Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/genética , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Estimulação Física , Receptores de AMPA/genética , Fatores de Tempo , Vibrissas/inervação
17.
J Physiol ; 589(Pt 15): 3753-73, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624967

RESUMO

Hyperpolarization-activated cyclic nucleotide modulated current (I(h)) sets resonance frequency within the θ-range (5­12 Hz) in pyramidal neurons. However, its precise contribution to the temporal fidelity of spike generation in response to stimulation of excitatory or inhibitory synapses remains unclear. In conditions where pharmacological blockade of I(h) does not affect synaptic transmission, we show that postsynaptic h-channels improve spike time precision in CA1 pyramidal neurons through two main mechanisms. I(h) enhances precision of excitatory postsynaptic potential (EPSP)--spike coupling because I(h) reduces peak EPSP duration. I(h) improves the precision of rebound spiking following inhibitory postsynaptic potentials (IPSPs) in CA1 pyramidal neurons and sets pacemaker activity in stratum oriens interneurons because I(h) accelerates the decay of both IPSPs and after-hyperpolarizing potentials (AHPs). The contribution of h-channels to intrinsic resonance and EPSP waveform was comparatively much smaller in CA3 pyramidal neurons. Our results indicate that the elementary mechanisms by which postsynaptic h-channels control fidelity of spike timing at the scale of individual neurons may account for the decreased theta-activity observed in hippocampal and neocortical networks when h-channel activity is pharmacologically reduced.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Estimulação Elétrica/métodos , Eletrofisiologia/métodos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neocórtex/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Potássio/metabolismo , Células Piramidais/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
J Neurosci ; 30(38): 12885-95, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861392

RESUMO

Homeostatic plasticity of neuronal intrinsic excitability (HPIE) operates to maintain networks within physiological bounds in response to chronic changes in activity. Classically, this form of plasticity adjusts the output firing level of the neuron through the regulation of voltage-gated ion channels. Ion channels also determine spike timing in individual neurons by shaping subthreshold synaptic and intrinsic potentials. Thus, an intriguing hypothesis is that HPIE can also regulate network synchronization. We show here that the dendrotoxin-sensitive D-type K+ current (ID) disrupts the precision of AP generation in CA3 pyramidal neurons and may, in turn, limit network synchronization. The reduced precision is mediated by the sequence of outward ID followed by inward Na+ current. The homeostatic downregulation of ID increases both spike-time precision and the propensity for synchronization in iteratively constructed networks in vitro. Thus, network synchronization is adjusted in area CA3 through activity-dependent remodeling of ID.


Assuntos
Região CA3 Hipocampal/fisiologia , Homeostase/fisiologia , Rede Nervosa/fisiologia , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
19.
Nat Protoc ; 3(10): 1559-68, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18802437

RESUMO

Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability. The protocol includes four main stages (acute/cultured slice preparation, visualization, recording and analysis) and can be completed in approximately 4 h.


Assuntos
Encéfalo/fisiologia , Eletrofisiologia/métodos , Neurônios/metabolismo , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos/métodos , Animais , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...