Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 54(1): 196-203, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21488079

RESUMO

UNLABELLED: A major enigma of primary biliary cirrhosis (PBC) is the selective targeting of biliary cells. Our laboratory has reported that after apoptosis, human intrahepatic biliary epithelial cells (HiBECs) translocate the E2 subunit of the pyruvate dehydrogenase complex immunologically intact into apoptotic bodies, forming an apotope. However, the cell type and specificity of this reaction has not been fully defined. To address this issue, we investigated whether the E2 subunit of the pyruvate dehydrogenase complex, the E2 subunit of the branched chain 2-oxo acid dehydrogenase complex, the E2 subunit of the oxo-glutarate dehydrogenase complex, four additional inner mitochondrial enzymes, and four nuclear antigens remain immunologically intact with respect to postapoptotic translocation in HiBECs and three additional control epithelial cells. We report that all three 2-oxo acid dehydrogenase enzymes share the ability to remain intact within the apotope of HiBECs. Interestingly, the E2 subunit of the branched chain 2-oxo acid dehydrogenase complex also remained intact in the other cell types tested. We extended the data, using sera from 95 AMA-positive and 19 AMA-negative patients with PBC and 76 controls, by testing for reactivity against the seven mitochondrial proteins studied herein and also the ability of AMA-negative sera to react with HiBEC apotopes. Sera from 3 of 95 AMA-positive sera, but none of the controls, reacted with 2,4-dienoyl coenzyme A reductase 1, an enzyme also present intact only in the HiBEC apotope, but which has not been previously associated with any autoimmune disease. Finally, the specificity of HiBEC apotope reactivity was confined to AMA-positive sera. CONCLUSION: We submit that the biliary specificity of PBC is secondary to the unique processes of biliary apoptosis.


Assuntos
Especificidade de Anticorpos/imunologia , Apoptose/imunologia , Autoanticorpos/sangue , Células Epiteliais/imunologia , Cirrose Hepática Biliar/imunologia , Aciltransferases/imunologia , Aciltransferases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/patologia , Masculino , Glândulas Mamárias Humanas/imunologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Pessoa de Meia-Idade , Proteínas Mitocondriais/imunologia , Proteínas Mitocondriais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
2.
J Biol Chem ; 277(27): 24771-9, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11980911

RESUMO

Bile acids are synthesized de novo in the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is required at two points in bile acid metabolism. First, 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid, the 27-carbon precursor of cholic acid, must be activated to its CoA derivative before side chain cleavage via peroxisomal beta-oxidation. Second, reutilization of cholate and other C24 bile acids requires reactivation prior to re-conjugation. We reported previously that homolog 2 of very long-chain acyl-CoA synthetase (VLCS) can activate cholate (Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., and Watkins, P. A. (2000) J. Biol. Chem. 275, 15605-15608). We now show that this enzyme also activates chenodeoxycholate, the secondary bile acids deoxycholate and lithocholate, and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. In contrast, VLCS activated 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoate, but did not utilize any of the C24 bile acids as substrates. We hypothesize that the primary function of homolog 2 is in the reactivation and recycling of C24 bile acids, whereas VLCS participates in the de novo synthesis pathway. Results of in situ hybridization, topographic orientation, and inhibition studies are consistent with the proposed roles of these enzymes in bile acid metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Coenzima A Ligases/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Ácidos e Sais Biliares/biossíntese , Ácido Quenodesoxicólico/metabolismo , Ácido Cólico/farmacologia , Clonagem Molecular , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Primers do DNA , Humanos , Cinética , Fígado/enzimologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
3.
Biochem J ; 363(Pt 3): 801-7, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11964182

RESUMO

According to current views, the second peroxisomal beta-oxidation pathway is responsible for the degradation of the side chain of bile acid intermediates. Peroxisomal multifunctional enzyme type 2 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(R)-3-hydroxyacyl-CoA dehydrogenase; MFE-2] catalyses the second (hydration) and third (dehydrogenation) reactions of the pathway. Deficiency of MFE-2 leads to accumulation of very-long-chain fatty acids, 2-methyl-branched fatty acids and C(27) bile acid intermediates in plasma, but bile acid synthesis is not blocked completely. In this study we describe an alternative pathway, which allows MFE-2 deficiency to be overcome. The alternative pathway consists of alpha-methylacyl-CoA racemase and peroxisomal multifunctional enzyme type 1 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase; MFE-1]. (24E)-3alpha,7alpha,12alpha-Trihydroxy-5beta-cholest-24-enoyl-CoA, the presumed physiological isomer, is hydrated by MFE-1 with the formation of (24S,25S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestanoyl-CoA [(24S,25S)-24-OH-THCA-CoA], which after conversion by a alpha-methylacyl-CoA racemase into the (24S,25R) isomer can again be dehydrogenated by MFE-1 to 24-keto-3alpha,7alpha,12alpha-trihydroxycholestanoyl-CoA, a physiological intermediate in cholic acid synthesis. The discovery of the alternative pathway of cholesterol side-chain oxidation will improve diagnosis of peroxisomal deficiencies by identification of serum 24-OH-THCA-CoA diastereomer profiles.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/análogos & derivados , Racemases e Epimerases/fisiologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/fisiologia , Acil Coenzima A/metabolismo , Animais , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/fisiologia , Isomerases/fisiologia , Modelos Químicos , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Enzima Bifuncional do Peroxissomo , Racemases e Epimerases/metabolismo , Ratos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...