Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0320023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38421162

RESUMO

The mechanisms underpinning the replication of genomic DNA have recently been challenged in Archaea. Indeed, the lack of origin of replication has no deleterious effect on growth, suggesting that replication initiation relies on homologous recombination. Recombination-dependent replication (RDR) appears to be based on the recombinase RadA, which is of absolute requirement when no initiation origins are detected. The origin of this flexibility in the initiation of replication and the extent to which it is used in nature are yet to be understood. Here, we followed the process of DNA replication throughout the growth stages of Thermococcus barophilus. We combined deep sequencing and genetics to elucidate the dynamics of oriC utilization according to growth phases. We discovered that in T. barophilus, the use of oriC diminishes from the lag to the middle of the log phase, and subsequently increases gradually upon entering the stationary phase. Although oriC demonstrates no indispensability, RadA does exhibit essentiality. Notably, a knockdown mutant strain provides confirmation of the pivotal role of RadA in RDR for the first time. Thus, we demonstrate the existence of a tight combination between oriC utilization and homologous recombination to initiate DNA replication along the growth phases. Overall, this study demonstrates how diverse physiological states can influence the initiation of DNA replication, offering insights into how environmental sensing might impact this fundamental mechanism of life. IMPORTANCE: Replication of DNA is highly important in all organisms. It initiates at a specific locus called ori, which serves as the binding site for scaffold proteins-either Cdc6 or DnaA-depending on the domain of life. However, recent studies have shown that the Archaea, Haloferax volcanii and Thermococcus kodakarensis could subsist without ori. Recombination-dependent replication (RDR), via the recombinase RadA, is the mechanism that uses homologous recombination to initiate DNA replication. The extent to which ori's use is necessary in natural growth remains to be characterized. In this study, using Thermococcus barophilus, we demonstrated that DNA replication initiation relies on both oriC and RDR throughout its physiological growth, each to varying degrees depending on the phase. Notably, a knockdown RadA mutant confirmed the prominent use of RDR during the log phase. Moreover, the study of ploidy in oriC and radA mutant strains showed that the number of chromosomes per cell is a critical proxy for ensuring proper growth and cell survival.


Assuntos
Thermococcus , Thermococcus/genética , Replicação do DNA , Recombinação Homóloga , DNA , Recombinases/genética , Origem de Replicação , Proteínas de Bactérias/genética
2.
Environ Microbiol Rep ; 15(6): 614-630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752716

RESUMO

Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.


Assuntos
Decápodes , Microbioma Gastrointestinal , Fontes Hidrotermais , Microbiota , Humanos , Animais , Filogenia , Decápodes/microbiologia , Dieta , Fontes Hidrotermais/microbiologia
3.
Microbiome ; 10(1): 189, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333777

RESUMO

BACKGROUND: In deep-sea hydrothermal vent areas, deprived of light, most animals rely on chemosynthetic symbionts for their nutrition. These symbionts may be located on their cuticle, inside modified organs, or in specialized cells. Nonetheless, many of these animals have an open and functional digestive tract. The vent shrimp Rimicaris exoculata is fueled mainly by its gill chamber symbionts, but also has a complete digestive system with symbionts. These are found in the shrimp foregut and midgut, but their roles remain unknown. We used genome-resolved metagenomics on separate foregut and midgut samples, taken from specimens living at three contrasted sites along the Mid-Atlantic Ridge (TAG, Rainbow, and Snake Pit) to reveal their genetic potential. RESULTS: We reconstructed and studied 20 Metagenome-Assembled Genomes (MAGs), including novel lineages of Hepatoplasmataceae and Deferribacteres, abundant in the shrimp foregut and midgut, respectively. Although the former showed streamlined reduced genomes capable of using mostly broken-down complex molecules, Deferribacteres showed the ability to degrade complex polymers, synthesize vitamins, and encode numerous flagellar and chemotaxis genes for host-symbiont sensing. Both symbionts harbor a diverse set of immune system genes favoring holobiont defense. In addition, Deferribacteres were observed to particularly colonize the bacteria-free ectoperitrophic space, in direct contact with the host, elongating but not dividing despite possessing the complete genetic machinery necessary for this. CONCLUSION: Overall, these data suggest that these digestive symbionts have key communication and defense roles, which contribute to the overall fitness of the Rimicaris holobiont. Video Abstract.


Assuntos
Decápodes , Fontes Hidrotermais , Animais , Simbiose , Decápodes/genética , Brânquias , Sistema Imunitário
5.
Microbiome ; 9(1): 87, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845886

RESUMO

BACKGROUND: Free-living and symbiotic chemosynthetic microbial communities support primary production and higher trophic levels in deep-sea hydrothermal vents. The shrimp Rimicaris exoculata, which dominates animal communities along the Mid-Atlantic Ridge, houses a complex bacterial community in its enlarged cephalothorax. The dominant bacteria present are from the taxonomic groups Campylobacteria, Desulfobulbia (formerly Deltaproteobacteria), Alphaproteobacteria, Gammaproteobacteria, and some recently discovered iron oxyhydroxide-coated Zetaproteobacteria. This epibiotic consortium uses iron, sulfide, methane, and hydrogen as energy sources. Here, we generated shotgun metagenomes from Rimicaris exoculata cephalothoracic epibiotic communities to reconstruct and investigate symbiotic genomes. We collected specimens from three geochemically contrasted vent fields, TAG, Rainbow, and Snake Pit, to unravel the specificity, variability, and adaptation of Rimicaris-microbe associations. RESULTS: Our data enabled us to reconstruct 49 metagenome-assembled genomes (MAGs) from the TAG and Rainbow vent fields, including 16 with more than 90% completion and less than 5% contamination based on single copy core genes. These MAGs belonged to the dominant Campylobacteria, Desulfobulbia, Thiotrichaceae, and some novel candidate phyla radiation (CPR) lineages. In addition, most importantly, two MAGs in our collection were affiliated to Zetaproteobacteria and had no close relatives (average nucleotide identity ANI < 77% with the closest relative Ghiorsea bivora isolated from TAG, and 88% with each other), suggesting potential novel species. Genes for Calvin-Benson Bassham (CBB) carbon fixation, iron, and sulfur oxidation, as well as nitrate reduction, occurred in both MAGs. However, genes for hydrogen oxidation and multicopper oxidases occurred in one MAG only, suggesting shared and specific potential functions for these two novel Zetaproteobacteria symbiotic lineages. Overall, we observed highly similar symbionts co-existing in a single shrimp at both the basaltic TAG and ultramafic Rainbow vent sites. Nevertheless, further examination of the seeming functional redundancy among these epibionts revealed important differences. CONCLUSION: These data highlight microniche partitioning in the Rimicaris holobiont and support recent studies showing that functional diversity enables multiple symbiont strains to coexist in animals colonizing hydrothermal vents. Video Abstract.


Assuntos
Decápodes , Fontes Hidrotermais , Animais , Filogenia , Proteobactérias , RNA Ribossômico 16S/genética , Simbiose
6.
Sci Rep ; 11(1): 7856, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846371

RESUMO

Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1-V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.


Assuntos
Biodiversidade , Biomarcadores/análise , DNA Ambiental/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Animais , Mar Mediterrâneo
7.
Front Immunol ; 11: 1511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765521

RESUMO

The symbiotic shrimp Rimicaris exoculata dominates the macrofauna inhabiting the active smokers of the deep-sea mid Atlantic ridge vent fields. We investigated the nature of the host mechanisms controlling the vital and highly specialized ectosymbiotic community confined into its cephalothoracic cavity. R. exoculata belongs to the Pleocyemata, crustacean brooding eggs, usually producing Type I crustins. Unexpectedly, a novel anti-Gram-positive type II crustin was molecularly identified in R. exoculata. Re-crustin is mainly produced by the appendages and the inner surfaces of the cephalothoracic cavity, embedding target epibionts. Symbiosis acquisition and regulating mechanisms are still poorly understood. Yet, symbiotic communities were identified at different steps of the life cycle such as brooding stage, juvenile recruitment and molt cycle, all of which may be crucial for symbiotic acquisition and control. Here, we show a spatio-temporal correlation between the production of Re-crustin and the main ectosymbiosis-related life-cycle events. Overall, our results highlight (i) a novel and unusual AMP sequence from an extremophile organism and (ii) the potential role of AMPs in the establishment of vital ectosymbiosis along the life cycle of deep-sea invertebrates.


Assuntos
Anostraca/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Proteínas de Artrópodes/metabolismo , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Ecossistema , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , Oceanos e Mares , Proteínas Citotóxicas Formadoras de Poros/genética , Simbiose
8.
Front Microbiol ; 10: 808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057515

RESUMO

Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.

9.
PLoS One ; 13(11): e0206084, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388125

RESUMO

Rimicaris chacei Williams and Rona 1986, formerly named as Chorocaris chacei, is a caridean shrimp living in deep-sea hydrothermal ecosystems. This shrimp is endemic to the Mid Atlantic Ridge (MAR) and lives at the periphery of aggregates of its well-known congeneric R. exoculata Williams and Rona 1986. Contrasting with the very dense and mobile clusters formed by R. exoculata, R. chacei lives in small groups of several individuals that are not very mobile. Although devoid of the characteristic hypertrophied cephalothorax of R. exoculata, which harbors the ectosymbionts, a microbial community has also been reported in the cephalothorax of R. chacei. Previous data on morphology, behavior and isotopic values indicate a diet based on a combination of feeding on its epibiotic bacteria and scavenging or occasional predation. In this study, our objective was to describe, for the first time, the distribution, morphology and phylogeny of the microbial communities associated with R. chacei. This species is significantly less studied than R. exoculata, but nevertheless represents the only other known example of symbiosis in crustaceans of MAR hydrothermal vent sites. Microbial communities have been observed at the same locations as in R. exoculata (mouthparts, branchiostegites and digestive tract). However, in R. chacei, the surfaces occupied by the bacteria are smaller. The main lineages are affiliated to Epsilon and Gammaproteobacteria in the cephalothorax and to Deferribacteres, Mollicutes, Epsilon and Gammaproteobacteria in the digestive tract. Comparison with the well-described bacterial communities of R. exoculata and hypotheses about the role of these communities in R. chacei are discussed.


Assuntos
Decápodes/microbiologia , Microbioma Gastrointestinal , Brânquias/microbiologia , Fontes Hidrotermais/microbiologia , Microbiota , Simbiose , Animais , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Bactérias/ultraestrutura , Sequência de Bases , Biodiversidade , Corantes Fluorescentes/metabolismo , Gammaproteobacteria/genética , Trato Gastrointestinal/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética
10.
Front Microbiol ; 9: 2246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294317

RESUMO

Deep-sea hydrothermal vent meiofauna have been the focus of recent research and the discovery of an abundant well-adapted free-living marine nematode on the Mid-Atlantic Ridge offers new perspectives on adaptations to the vent environment. Indeed, knowledge concerning biological interactions of microbes and meiofauna in marine extreme environments is scarce, especially for nematodes. In this study, we used microscopic observations [fluorescence in situ hybridization (FISH) and scanning electron microscopy (SEM)] and metabarcoding of 16S rRNA to characterize the bacterial community of the nematode species Oncholaimus dyvae, an overlooked but ecologically important vent organism. Detection of bacteria in the buccal cavity and on the cuticle (SEM) and epibionts in its intestine (FISH) suggests that O. dyvae harbors its own bacterial community. Molecular results and phylogenetic analysis show that bacteria associated with this species are related to symbiotic lineages typical of hydrothermal vent fauna, such as sulfur-oxidizing bacteria related to Epsilonproteobacteria and Gammaproteobacteria. This multi-approach study suggests a potential symbiotic role of bacteria with its nematode host and opens new research perspectives on vent meiofauna.

11.
PLoS One ; 12(3): e0174338, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328982

RESUMO

Rimicaris exoculata is a caridean shrimp that dominates the fauna at several hydrothermal vent sites of the Mid-Atlantic Ridge. It has two distinct and stable microbial communities. One of these epibiontic bacterial communities is located in the shrimp gut and has a distribution and role that are poorly understood. The second colonizes its enlarged gill chamber and is involved in host nutrition. It is eliminated after each molt, and has colonization processes reminiscent of those of a biofilm. The presence and expression of genes usually involved in quorum sensing (QS) were then studied. At four sites, Rainbow, TAG, Snake Pit and Logatchev, two lux genes were identified in the R. exoculata epibiontic community at different shrimp molt stages and life stages. RT-PCR experiments highlighted lux gene expression activity at TAG, Snake Pit and Rainbow vent sites. Their potential QS activity and their possible roles in epibiont colonization processes are discussed. Moreover, phylogenetic analysis has shown the presence of three clades for luxS (Epsilonproteobacteria) and four clades for luxR (Gammaproteobacteria) genes, each clade being restricted to a single site. These genes are more divergent than the 16S rRNA one. They could therefore be used as biogeographical genetic markers.


Assuntos
DNA Bacteriano/genética , Decápodes/microbiologia , Genes Bacterianos/genética , Marcadores Genéticos/genética , Fontes Hidrotermais/microbiologia , Percepção de Quorum/genética , Animais , Epsilonproteobacteria/genética , Gammaproteobacteria/genética , Brânquias/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
12.
Genome Announc ; 4(6)2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27834711

RESUMO

Here, we present the draft genome sequences of two thermophilic Marinitoga strain members of the Thermotogales order, Marinitoga camini DV1155 and Marinitoga camini DV1197. These strains were isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge.

13.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26324855

RESUMO

Rimicaris exoculata is a deep-sea hydrothermal vent shrimp whose enlarged gill chamber houses a complex trophic epibiotic community. Its gut harbours an autochthonous and distinct microbial community. This species dominates hydrothermal ecosystem megafauna along the Mid-Atlantic Ridge, regardless of contrasting geochemical conditions prevailing in them. Here, the resident gut epibiont community at four contrasted hydrothermal vent sites (Rainbow, TAG, Logatchev and Ashadze) was analysed and compiled with previous data to evaluate the possible influence of site location, using 16S rRNA surveys and microscopic observations (transmission electron microscopy, scanning electron microscopy and fluorescence in situ hybridization analyses). Filamentous epibionts inserted between the epithelial cell microvilli were observed on all examined samples. Results confirmed resident gut community affiliation to Deferribacteres, Mollicutes, Epsilonproteobacteria and to a lesser extent Gammaproteobacteria lineages. Still a single Deferribacteres phylotype was retrieved at all sites. Four Mollicutes-related operational taxonomic units were distinguished, one being only identified on Rainbow specimens. The topology of ribotype median-joining networks illustrated a community diversification possibly following demographic expansions, suggesting a more ancient evolutionary history and/or a larger effective population size at Rainbow. Finally, the gill chamber community distribution was also analysed through ribotype networks based on sequences from R. exoculata collected at the Rainbow, Snake Pit, TAG, Logatchev and Ashadze sites. Results allow the refining of hypotheses on the epibiont role and transmission pathways.


Assuntos
Decápodes/microbiologia , Microbioma Gastrointestinal/genética , Brânquias/microbiologia , Fontes Hidrotermais/microbiologia , Simbiose , Animais , Oceano Atlântico , Biodiversidade , Ecossistema , Epsilonproteobacteria/genética , Gammaproteobacteria/genética , Hibridização in Situ Fluorescente , Mycoplasma/genética , Filogeografia , RNA Ribossômico 16S/genética
14.
ISME J ; 7(1): 96-109, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22914596

RESUMO

The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH(13)CO(3) and NaH(14)CO(3)) in the presence of two different electron donors (Na(2)S(2)O(3) and Fe(2+)) and with radiolabelled organic compounds ((14)C-acetate and (3)H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway.


Assuntos
Ciclo do Carbono , Decápodes/microbiologia , Epsilonproteobacteria/isolamento & purificação , Gammaproteobacteria/isolamento & purificação , Brânquias/microbiologia , Fontes Hidrotermais , Animais , Crescimento Quimioautotrófico , Decápodes/fisiologia , Epsilonproteobacteria/fisiologia , Gammaproteobacteria/fisiologia , Simbiose
15.
ISME J ; 6(3): 597-609, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21993397

RESUMO

The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first 'epibiotic' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle.


Assuntos
Decápodes/microbiologia , Epsilonproteobacteria/fisiologia , Gammaproteobacteria/fisiologia , Simbiose , Animais , DNA Bacteriano/genética , Decápodes/crescimento & desenvolvimento , Epsilonproteobacteria/genética , Feminino , Gammaproteobacteria/genética , Brânquias/microbiologia , Fontes Hidrotermais , Hibridização in Situ Fluorescente , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico 16S/genética
16.
FEMS Microbiol Ecol ; 71(2): 291-303, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19951370

RESUMO

Rimicaris exoculata dominates the megafauna of several Mid-Atlantic Ridge hydrothermal sites. Its gut is full of sulphides and iron-oxide particles and harbours microbial communities. Although a trophic symbiosis has been suggested, their role remains unclear. In vivo starvation experiments in pressurized vessels were performed on shrimps from Rainbow and Trans-Atlantic Geotraverse sites in order to expel the transient gut contents. Microbial communities associated with the gut of starved and reference shrimps were compared using 16S rRNA gene libraries and microscopic observations (light, transmission and scanning electron microscopy and FISH analyses). We show that the gut microbiota of shrimps from both sites included mainly Deferribacteres, Mollicutes, Epsilon- and Gammaproteobacteria. For the first time, we have observed filamentous bacteria, inserted between microvilli of gut epithelial cells. They remained after starvation periods in empty guts, suggesting the occurrence of a resident microbial community. The bacterial community composition was the same regardless of the site, except for Gammaproteobacteria retrieved only in Rainbow specimens. We observed a shift in the composition of the microbiota of long-starved specimens, from the dominance of Deferribacteres to the dominance of Gammaproteobacteria. These results reinforce the hypothesis of a symbiotic relationship between R. exoculata and its gut epibionts.


Assuntos
Bactérias/isolamento & purificação , Decápodes/microbiologia , Trato Gastrointestinal/microbiologia , Simbiose , Animais , Bactérias/genética , DNA Bacteriano/genética , Biblioteca Gênica , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Res Microbiol ; 156(1): 82-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15636751

RESUMO

The hyperthermophilic archaeon Thermococcus hydrothermalis was cultivated in continuous culture in a gas-lift bioreactor in the absence of elemental sulphur on both proteinaceous and maltose-containing media. Optimal conditions (pH, temperature and gas flow rate), determined on complex media that yielded maximal growth rate and maximal steady state cell density, were obtained at 80 degrees C, pH 6 and gas sparging at 0.2 v v(-1) min(-1). Higher steady state cell densities were obtained on a medium containing maltose and yeast extract. In order to design a defined and minimal media, the nutritional requirements of T. hydrothermalis were then investigated using continuous culture in the absence of elemental sulphur in the gas-lift bioreactor. First, the complex nutriments were replaced and a defined medium containing maltose, 19 amino acids and the two nitrogenous bases adenine and thymine, was determined. Secondly, selective feedings and withdrawal of amino acids showed requirements for 14 amino acids.


Assuntos
Meios de Cultura/química , Thermococcus/crescimento & desenvolvimento , Adenina/metabolismo , Aminoácidos/metabolismo , Reatores Biológicos , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Maltose/metabolismo , Proteínas/metabolismo , Enxofre , Temperatura , Timina/metabolismo
18.
Int J Syst Evol Microbiol ; 54(Pt 6): 1953-1957, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15545417

RESUMO

A novel anaerobic, thermophilic and heterotrophic bacterium, designated strain DV1140(T), was isolated from a deep-sea hydrothermal vent sample from the Mid-Atlantic Ridge. The cells were non-motile straight rods, 1.8 microm long and 0.4 microm wide, surrounded by an outer sheath-like structure (toga). They grew at 45-80 degrees C (optimum 65 degrees C), pH 5.0-9.0 (optimum pH 6.0) and at sea salt concentrations of 20-60 g l(-1) (optimum 30 g l(-1)). Strain DV1140(T) was able to ferment yeast extract, peptone, brain heart infusion, gelatin, starch, galactose, arabinose, glucose, trehalose and cellobiose. The fermentation products identified on glucose in the presence of yeast extract and peptone were acetate, isovalerate and hydrogen. The G+C content of the genomic DNA was 33 mol%. Phylogenetic analysis of the 16S rRNA gene sequence (GenBank accession number AJ577471) located the strain within the genus Thermosipho in the bacterial domain. On the basis of 16S rRNA gene sequence comparisons, and physiological and biochemical characteristics, the isolate represents a novel species, for which the name Thermosipho atlanticus sp. nov. is proposed. The type strain is DV1140(T) (=CIP 108053(T)=DSM 15807(T)).


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbiologia da Água , Ácido Acético/metabolismo , Anaerobiose , Bactérias/citologia , Bactérias/metabolismo , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Fermentação , Genes de RNAr , Hemiterpenos , Temperatura Alta , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Mid-Atlantic Region , Dados de Sequência Molecular , Movimento , Compostos Orgânicos/metabolismo , Ácidos Pentanoicos/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Solução Salina Hipertônica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...