Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(33): 30442-30449, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636904

RESUMO

The high thermal conductivity of polycrystalline diamond makes it ideally suited for thermal management solutions for gallium nitride (GaN) devices, with a diamond layer grown on an aluminum nitride (AlN) interlayer atop the GaN stack. However, this application is limited by the thermal barrier at the interface between diamond and substrate, which has been associated with the transition region formed in the initial phases of growth. In this work, in situ spectroscopic ellipsometry (SE) is employed to monitor early-stage microwave plasma-enhanced chemical vapor deposition diamond growth on AlN. An optical model was developed from ex situ spectra and applied to spectra taken in situ during growth. Coalescence of separate islands into a single film was marked by a reduction in bulk void fraction prior to a spike in sp2 fraction due to grain boundary formation. Parameters determined by the SE model were corroborated using Raman spectroscopy and atomic force microscopy.

2.
ACS Appl Mater Interfaces ; 12(48): 54138-54145, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196180

RESUMO

Integrating diamond with GaN high electron mobility transistors (HEMTs) improves thermal management, ultimately increasing the reliability and performance of high-power high-frequency radio frequency amplifiers. Conventionally, an amorphous interlayer is used before growing polycrystalline diamond onto GaN in these devices. This layer contributes significantly to the effective thermal boundary resistance (TBReff) between the GaN HEMT and the diamond, reducing the benefit of the diamond heat spreader. Replacing the amorphous interlayer with a higher thermal conductivity crystalline material would reduce TBReff and help to enable the full potential of GaN-on-diamond devices. In this work, a crystalline Al0.32Ga0.68N interlayer has been integrated into a GaN/AlGaN HEMT device epitaxy. Two samples were studied, one with diamond grown directly on the AlGaN interlayer and another incorporating a thin crystalline SiC layer between AlGaN and diamond. The TBReff, measured using transient thermoreflectance, was improved for the sample with SiC (30 ± 5 m2 K GW-1) compared to the sample without (107 ± 44 m2 K GW-1). The reduced TBReff is thought to arise from improved adhesion between SiC and the diamond compared to the diamond directly on AlGaN because of an increased propensity for carbide bond formation between SiC and the diamond. The stronger carbide bonds aid transmission of phonons across the interface, improving heat transport.

3.
ACS Appl Mater Interfaces ; 11(43): 40826-40834, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31603642

RESUMO

The growth of >100-µm-thick diamond layers adherent on aluminum nitride with low thermal boundary resistance between diamond and AlN is presented in this work. The thermal barrier resistance was found to be in the range of 16 m2·K/GW, which is a large improvement on the current state-of-the-art. While thick films failed to adhere on untreated AlN films, AlN films treated with hydrogen/nitrogen plasma retained the thick diamond layers. Clear differences in ζ-potential measurement confirm surface modification due to hydrogen/nitrogen plasma treatment. An increase in non-diamond carbon in the initial layers of diamond grown on pretreated AlN is seen by Raman spectroscopy. The presence of non-diamond carbon has minimal effect on the thermal barrier resistance. The surfaces studied with X-ray photoelectron spectroscopy revealed a clear distinction between pretreated and untreated samples. The surface aluminum goes from a nitrogen-rich environment to an oxygen-rich environment after pretreatment. A clean interface between diamond and AlN is seen by cross-sectional transmission electron microscopy.

4.
Nanoscale ; 11(21): 10266-10272, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31116215

RESUMO

In this work we have demonstrated the growth of nanocrystalline diamond on boron nitride ceramic. We measured the zeta potential of the ceramics to select the diamond seeds. Diamond was then grown on the seeded ceramics using a microwave chemical vapour deposition system. A clear difference was found between the samples which were seeded with nanodiamond and the ones not seeded before growth. Raman spectroscopy confirmed the excellent quality of the diamond film. Dielectric measurements showed an increase in the dielectric constant of the material after diamond growth. The diamond was also doped with boron to make it superconducting. The film had a transition temperature close to 3.4 K. Similar strategies can be applied for the growth of diamond on other types of ceramics.

5.
ACS Omega ; 3(2): 2183-2192, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458523

RESUMO

Microwave dielectric loss tangent measurements are demonstrated as a method for quantifying trace sp2-hybridized carbon impurities in sub-micron diamond powders. Appropriate test samples are prepared by vacuum annealing at temperatures from 600 to 1200 °C to vary the sp2/sp3 carbon ratio through partial surface graphitization. Microwave permittivity measurements are compared with those obtained using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The average particle size remains constant (verified by scanning electron microscopy) to decouple any geometric dielectric effects from the microwave measurements. After annealing, a small increase in sp2 carbon was identified from the XPS C 1s and Auger spectra, the EELS σ* peak in the C 1s spectra, and the D and G bands in Raman spectroscopy, although a quantifiable diamond to G-band peak ratio was unobtainable. Surface hydrogenation was also evidenced in the Raman and XPS O 1s data. Microwave cavity perturbation measurements show that the dielectric loss tangent increases with increasing sp2 bonding, with the most pertinent finding being that these values correlate with other measurements and that trace concentrations of sp2 carbon as small as 5% can be detected.

6.
J Phys Condens Matter ; 28(10): 106002, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26882084

RESUMO

The microwave cavity perturbation (MCP) technique is used to identify the transition from magnetite (Fe3O4) to the meta-stable form of maghemite (γ-Fe2O3). In this study Fe3O4 was annealed at temperatures from 60 to 300 °C to vary the oxidation. Subsequent to annealing, the complex permittivity and magnetic permeability of the iron oxide powders were measured. The transition to γ-Fe2O3 was corroborated with x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). XRD, XPS and VSM implied that the starting powder was consistent with Fe3O4 and the powders annealed at more than 200 °C were transitioning to γ-Fe2O3. The MCP measurements gave large differences in both complex permittivity and magnetic permeability of the two phases in the frequency range of 2.5-10.2 GHz. Magnetic permeability decreased with annealing temperature, though magnetic losses showed frequency dependent behaviour. Complex permittivity measurements showed a large decrease in both dielectric constant and losses at all measurement frequencies, as well as a prominent loss peak centred around the phase transition temperatures. We interpret the loss peak as being a consequence of field effects due to an intermediate multi-phase mixture. Additionally, almost no frequency dependence was observed. The reduction in complex permittivity implies that the Feoct(2+) cations in the lattice provide a significant contribution to polarization at microwave frequencies and the effects of Feoct(3+) are nominal in comparison.. The change in loss can be explained as a combination of the differences in the effective conductivity of the two phases (i.e. Fe3O4 exhibits electron-hopping conduction whereas the presence of vacancies in γ-Fe2O3 nullifies this). This shows that the non-invasive MCP measurements serve as a highly sensitive and versatile method for looking at this phase transition in iron and potentially the effects of oxidation states on the polarization in other iron oxides.


Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico/química , Micro-Ondas , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Oxirredução , Permeabilidade , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...