Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 166(3): 427-452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37161795

RESUMO

Brain aging is a naturally occurring process resulting in the decline of cognitive functions and increased vulnerability to develop age-associated disorders. Fluctuation in lipid species is crucial for normal brain development and function. However, impaired lipid metabolism and changes in lipid composition in the brain have been increasingly recognized to play a crucial role in physiological aging, as well as in several neurodegenerative diseases. In the last decades, the role of sexual dimorphism in the vulnerability to develop age-related neurodegeneration has increased. However, further studies are warranted for detailed assessment of how age, sex, and additional non-biological factors may influence the lipid changes in brains. The aim of this work is to address the presence of sex differences in the brain lipid changes that occur along aging, and in the two most common age-related neurodegenerative disorders (Alzheimer's and Parkinson's diseases). We included the studies that assessed lipid-related alterations in the brain of both humans and experimental models. Additionally, we explored the influence of sex on lipid-lowering therapies. We conclude that sex exerts a notable effect on lipid modifications occurring with age and neurodegeneration, and in lipid-reducing interventions. Therefore, the application of sex as an experimental variable is strongly encouraged for future research in the field of precision medicine approach.


Assuntos
Doença de Alzheimer , Neuroquímica , Humanos , Feminino , Masculino , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Metabolismo dos Lipídeos , Lipídeos
2.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237559

RESUMO

Cardiovascular diseases represent the leading cause of mortality and morbidity worldwide, and age is an important risk factor. Preclinical models provide supportive evidence toward age-related cardiac changes, as well as allow for the study of pathological aspects of the disease. In the present work, we evaluated the electrocardiogram (ECG) recording in the O. degus during the aging process in both females and males. Taking into account the age and sex, our study provides the normal ranges for the heart rate, duration and voltage of the ECG waves and intervals, as well as electrical axis deviation. We found that the QRS complex duration and QTc significantly increased with age, whereas the heart rate significantly decreased. On the other hand, the P wave, PR and QTc segments durations, S wave voltage and electrical axis were found to be significantly different between males and females. The heart rhythm was also altered in aged animals, resulting in an increased incidence of arrhythmias, especially in males. Based on these results, we suggest that this rodent model could be useful for cardiovascular research, including impacts of aging and biological sex.

3.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049550

RESUMO

Magnesium (Mg) has a vital role in the human body, and the kidney is a key organ in the metabolism and excretion of this cation. The objective of this work is to compile the available evidence regarding the role that Mg plays in health and disease, with a special focus on the elderly population with chronic kidney disease (CKD) and the eventual sex differences. A narrative review was carried out by executing an exhaustive search in the PubMed, Scopus, and Cochrane databases. Ten studies were found in which the role of Mg and sex was evaluated in elderly patients with CKD in the last 10 years (2012-2022). The progression of CKD leads to alterations in mineral metabolism, which worsen as the disease progresses. Mg can be used as a coadjuvant in the treatment of CKD patients to improve glomerular filtration, but its use in clinical applications needs to be further characterized. In conclusion, there's a need for well-designed prospective clinical trials to advise and standardize Mg supplementation in daily clinical practice, taking age and sex into consideration.


Assuntos
Magnésio , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Idoso , Progressão da Doença , Estudos Prospectivos , Rim , Envelhecimento , Taxa de Filtração Glomerular
4.
Neurotox Res ; 41(3): 224-241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36723781

RESUMO

Causes of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1ß (IL-1ß) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Animais , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Flavonoides/farmacologia , Rutina/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/metabolismo , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Anti-Inflamatórios/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
5.
Cell Mol Neurobiol ; 43(1): 265-281, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988761

RESUMO

Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1ß, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1ß, TNF-α, CCL2, CCL5 and CCR2.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Ratos Wistar , Oxidopamina , Doenças Neuroinflamatórias , Dopamina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios Dopaminérgicos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo
6.
Food Funct ; 13(11): 6306-6316, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35611932

RESUMO

Gut microbiota alteration (gut dysbiosis) occurs during the onset and progression of Parkinson's disease. Gut dysbiosis biomarkers could be relevant to prodromal disease. Urolithins, anti-inflammatory metabolites produced from some dietary polyphenols by specific gut microbial ecologies (urolithin metabotypes), have been proposed as biomarkers of gut microbiota composition and functionality. However, this has not been explored in Parkinson's disease patients. The current study aimed to assess associations between urolithin metabotypes, gut dysbiosis and disease severity in Parkinson's disease patients. Participants (52 patients and 117 healthy controls) provided stool samples for microbiota sequencing and urine samples for urolithin profiling before and after consuming 30 g of walnuts for three days. Data on demographics, medication, disease duration and Hoehn and Yahr disease stage were collected. We observed a significant gradual increase of urolithin non-producers (metabotype-0) as the disease severity increased. The gut microbiome of metabotype-0 patients and patients with the greatest severity was characterized by a more altered bacterial composition, i.e., increased pro-inflammatory Enterobacteriaceae and reduced protective bacteria against autoimmune and inflammatory processes, including butyrate and urolithin-producing bacteria (Lachnospiraceae members and Gordonibacter). Besides, their microbiome was characterized by predictive functions of lipopolysaccharide biosynthesis and metabolism of glutathione, cysteine and methionine that could indirectly reflect the gut pro-inflammatory status. Urolithin detection in urine is a feasible, non-invasive and fast approach that can reflect gut microbiome dysbiosis and intestinal inflammation in Parkinson's disease patients. Our current study could provide novel strategies for improving diagnostics, and for preventing and treating disease progression in microbiota-based interventions.


Assuntos
Microbioma Gastrointestinal , Juglans , Doença de Parkinson , Bactérias/genética , Bactérias/metabolismo , Biomarcadores/metabolismo , Disbiose , Humanos , Juglans/metabolismo
7.
Neuroscientist ; 28(6): 530-542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33583239

RESUMO

It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.


Assuntos
Doenças do Sistema Nervoso Autônomo , Cardiopatias , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doenças do Sistema Nervoso Autônomo/etiologia , Doenças do Sistema Nervoso Autônomo/diagnóstico , Cardiopatias/complicações
8.
Cell Mol Neurobiol ; 42(5): 1283-1300, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33387119

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.


Assuntos
Inflamassomos , Doença de Parkinson , Humanos , Inflamação/patologia , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson/patologia
9.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948285

RESUMO

Dysautonomia is a common non-motor symptom in Parkinson's disease (PD). Most dysautonomic symptoms appear due to alterations in the peripheral nerves of the autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. The degeneration of sympathetic nerve fibers and neurons leads to cardiovascular dysfunction, which is highly prevalent in PD patients. Cardiac alterations such as orthostatic hypotension, heart rate variability, modifications in cardiogram parameters and baroreflex dysfunction can appear in both the early and late stages of PD, worsening as the disease progresses. In PD patients it is generally found that parasympathetic activity is decreased, while sympathetic activity is increased. This situation gives rise to an imbalance of both tonicities which might, in turn, promote a higher risk of cardiac damage through tachycardia and vasoconstriction. Cardiovascular abnormalities can also appear as a side effect of PD treatment: L-DOPA can decrease blood pressure and aggravate orthostatic hypotension as a result of a negative inotropic effect on the heart. This unwanted side effect limits the therapeutic use of L-DOPA in geriatric patients with PD and can contribute to the number of hospital admissions. Therefore, it is essential to define the cardiac features related to PD for the monitorization of the heart condition in parkinsonian individuals. This information can allow the application of intervention strategies to improve the course of the disease and the proposition of new alternatives for its treatment to eliminate or reverse the motor and non-motor symptoms, especially in geriatric patients.


Assuntos
Coração/fisiopatologia , Doença de Parkinson/fisiopatologia , Animais , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Sistema Nervoso Parassimpático/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia
10.
Sci Rep ; 11(1): 19871, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615910

RESUMO

The impact of age-associated disorders is increasing as the life expectancy of the population increments. Cardiovascular diseases and neurodegenerative disorders, such as Parkinson's disease, have the highest social and economic burden and increasing evidence show interrelations between them. Particularly, dysfunction of the cardiovascular nervous system is part of the dysautonomic symptoms of Parkinson's disease, although more studies are needed to elucidate the role of cardiac function on it. We analyzed the dopaminergic system in the nigrostriatal pathway of Parkinsonian and dyskinetic monkeys and the expression of some key proteins in the metabolism and synthesis of catecholamines in the heart: total and phosphorylated (phospho) tyrosine hydroxylase (TH), and membrane (MB) and soluble (S) isoforms of catechol-O-methyl transferase (COMT). The dopaminergic system was significantly depleted in all MPTP-intoxicated monkeys. MPTP- and MPTP + L-DOPA-treated animals also showed a decrease in total TH expression in both right (RV) and left ventricle (LV). We found a significant increase of phospho-TH in both groups (MPTP and MPTP + L-DOPA) in the LV, while this increase was only observed in MPTP-treated monkeys in the RV. MB-COMT analysis showed a very significant increase of this isoform in the LV of MPTP- and MPTP + L-DOPA-treated animals, with no significant differences in S-COMT levels. These data suggest that MB-COMT is the main isoform implicated in the cardiac noradrenergic changes observed after MPTP treatment, suggesting an increase in noradrenaline (NA) metabolism. Moreover, the increase of TH activity indicates that cardiac noradrenergic neurons still respond despite MPTP treatment.


Assuntos
Catecol O-Metiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biomarcadores , Catecol O-Metiltransferase/genética , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática , Imuno-Histoquímica , Macaca fascicularis , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Tirosina 3-Mono-Oxigenase/genética
11.
Aging (Albany NY) ; 13(18): 22059-22077, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565717

RESUMO

World's population is exponentially aging as people reaching 100 years old has increased. The number of areas with the highest centennial population rates (Blue Zones), are significantly higher. Are there any determinant factors that favor this situation in Spain? The goal of this study was to determine the possible influence of sex, rurality and socioeconomic factors (Gross Domestic Product (GDP)) on the prevalence of the centennial population of the Spanish society. The Spanish register of inhabitants was published in 2017 by the National Statistics Institute. The analysis was carried out both by Autonomous Communities and by provinces in phases: a first descriptive analysis, followed by an inferential analysis, based on statistical tests (independent T- Student test, Pearson correlation and ANOVA). There were significant interactions between: i) sex and longevity (in favor of the female population); ii) female and rural housing and iii) female, GDP and urban areas. Feminization was proven in the longevity revolution, but, in general, GDP per Capita was not a significant survival factor on its own. This study was the first step of further analysis related to extreme longevity in Spain, which will include other dependent variables such as state of health and well-being as well as social factors.


Assuntos
Longevidade , População , População Rural/estatística & dados numéricos , Classe Social , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Produto Interno Bruto , Humanos , Lactente , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Espanha , População Urbana/estatística & dados numéricos , Adulto Jovem
12.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919373

RESUMO

The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer's disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson's disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100ß were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/patologia , Intoxicação por MPTP/patologia , Neurotoxinas/toxicidade , Transtornos Parkinsonianos/patologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inflamação/etiologia , Intoxicação por MPTP/etiologia , Masculino , Neostriado/efeitos dos fármacos , Neostriado/patologia , Octodon , Transtornos Parkinsonianos/etiologia
13.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809767

RESUMO

Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaperoning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson's disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dysfunction is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. However, certain non-motor symptoms with a great impact on quality of life do not respond to dopaminergic drugs; therefore, the development and testing of new treatments for non-motor symptoms of PD remain a priority. Since small HSP27 was shown to prevent α-synuclein aggregation and cytotoxicity, this protein might constitute a suitable target to prevent or delay the motor and non-motor symptoms of PD. In the first part of our review, we focus on the cardiovascular dysregulation observed in PD patients. In the second part, we present data on the possible role of HSP27 in preventing the accumulation of amyloid fibrils and aggregated forms of α-synuclein. We also include our own studies, highlighting the possible protective cardiac effects induced by L-DOPA treatment through the enhancement of HSP27 levels and activity.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Doença de Parkinson/tratamento farmacológico , Agregados Proteicos , Animais , Proteínas de Choque Térmico HSP27/química , Humanos , Doença de Parkinson/fisiopatologia , Ligação Proteica , alfa-Sinucleína/metabolismo
14.
Ageing Res Rev ; 64: 101204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33152453

RESUMO

Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, ß-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Octodon , Envelhecimento , Animais , Modelos Animais de Doenças , Multimorbidade
15.
Front Aging Neurosci ; 12: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848701

RESUMO

Background: Parkinson's disease (PD) is described as an age-related neurodegenerative disorder. However, the vast majority of research is carried out using experimental models of young animals lacking the implications of the decline processes associated with aging. It has been suggested that several molecular pathways are involved in the perpetuation of the degeneration and the neuroinflammation in PD. Among others, mitogen-activated protein kinases (MAPKs) have been highly implicated in the development of PD, and regulating components of their activity are indicated as promising therapeutic targets. Methods: To further define how MAPKs expression is related to the glial response and neuronal cell death, Parkinsonism was induced under an acute regimen in old mice. Moreover, the sacrifice was carried out at different time points (4, 8, 24, and 48 h) after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) injections to describe the early dynamic changes over time produced by the intoxication. Results: The results revealed that neuronal death increases as glial response increases in the nigrostriatal pathway. It was observed that both processes increase from 4 h in the ventral mesencephalon (VM), and neuronal death becomes significant at 48 h. In the striatum, they were significantly increased from 48 h after the MPTP administration compared with that in the control mice. Moreover, the p-ERK levels decrease, while phospho-p38 expression increases specifically in the striatum at 48 h after MPTP intoxication. Conclusions: The importance of these data lies in the possibility of elucidating the underlying mechanisms of neurodegenerative processes under aging conditions to provide knowledge for the search of solutions that slow down the progression of PD.

16.
Mov Disord ; 35(4): 698-703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872915

RESUMO

BACKGROUND: Autonomic dysfunction is a well-known dominant symptom in the advanced stages of Parkinson's disease. However, the role of cardiac sympathetic nerves still needs to be elucidated. OBJECTIVES: To evaluate cardiac sympathetic response in Parkinsonian and dyskinetic monkeys. METHODS: Adult male monkeys were divided into 1 of the following 3 groups: controls, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine+levodopa-treated animals. Noradrenaline, its metabolite normetanephrine, and phospho-Heat shock proten 27 (p-Hsp27) at serine 82 levels were analyzed in the left and right ventricles of the heart. Tyrosine hydroxylase immunohistochemistry was performed in the ventral mesencephalon. RESULTS: The results were the following: (1) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication significantly increased normetanephrine levels and decreased noradrenaline turnover in the right ventricle without changes in the left ventricle; however, (2) levodopa treatment decreased noradrenaline levels and enhanced the normetanephrine/noradrenaline ratio in parallel with a very significant increase of Hsp27 activity in both ventricles. CONCLUSIONS: Levodopa treatment could induce protective cardiac effects through the increased Hsp27 activity. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Discinesias/metabolismo , Proteínas de Choque Térmico HSP27 , Norepinefrina , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Levodopa , Macaca fascicularis , Masculino , Fosforilação , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...