Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(35): 41537-41548, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671463

RESUMO

Cycling stability and safety are two of the main challenges facing lithium metal batteries with metallic lithium as anodes. Quasi-solid-state lithium metal batteries based on gel polymer electrolytes are one of the important development directions for lithium metal batteries addressing those challenges. Herein, we prepare lithiated phosphoryl cellulose nanocrystals (PCNC-Li) as a modification material for poly(vinylidene fluoride) (PVDF) gel polymer electrolyte to improve cycling stability and safety of quasi-solid-state lithium metal batteries. The synthesized PCNC-Li tends to form a uniform network structure on the surface of the PVDF membrane, in which the phosphoryl groups grafted regularly on celluloses can regulate the transport of lithium ions. As a result, a more uniform ion flux and more stable lithium anode interface support an obviously improved cycling stability for lithium metal batteries. Moreover, the introduction of the PCNC-Li coating layer makes the modified PVDF membranes have a better thermal stability and an enhanced mechanical strength, which is beneficial for improvement of safety of lithium metal batteries. This work provides a new alternative to fabricating a better composite gel polymer electrolyte for lithium metal batteries.

2.
ACS Appl Mater Interfaces ; 15(10): 13195-13204, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880117

RESUMO

A Li-rich Mn-based layered oxide cathode (LLO) is one of the most promising cathode materials for achieving high-energy lithium-ion batteries. Nevertheless, the intrinsic problems including sluggish kinetics, oxygen evolution, and structural degradation lead to unsatisfactory performance in rate capability, initial Coulombic efficiency, and stability of LLO. Herein, different from the current typical surface modification, an interfacial optimization of primary particles is proposed to improve the simultaneous transport of ions and electrons. The modified interfaces containing AlPO4 and carbon can effectively increase the Li+ diffusion coefficient and decrease the interfacial charge-transfer resistance, thereby achieving fast charge-transport kinetics. Moreover, the in situ high-temperature X-ray diffraction confirms that the modified interface can improve the thermal stability of LLO by inhibiting the lattice oxygen release on the surface of the delithiated cathode material. In addition, the chemical and visual analysis of the cathode-electrolyte interface (CEI) composition clarifies that a highly stable and conductive CEI film generated on the modified electrode can facilitate interfacial kinetic transmission during cycling. As a result, the optimized LLO cathode exhibits a high initial Coulombic efficiency of 87.3% at a 0.2C rate and maintains superior high-rate stability with a capacity retention of 88.2% after 300 cycles at a 5C high rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...