Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(5): 2395-2401, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722860

RESUMO

PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H2 sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions. The XPS analysis reveals that the formation of PdO species on PdNi thin films plays a crucial role in the failure of hydrogen sensing. Additionally, density functional theory (DFT) calculations indicate that hydrogen atoms encounter a diffusion energy barrier during the penetration process from the PdNiOx surface to the subsurface region. The identification of PdNi film failure mechanisms through XPS and DFT offers valuable insights into the development of gas sensors with enhanced long-term stability. Guided by these mechanisms, we propose a method to restore the hydrogen sensing response time and magnitude to a certain extent by reducing the partially oxidized surface of the PdNi alloy under a hydrogen atmosphere at 70 °C, thereby restoring Pd to its metallic state with zero valence.


Assuntos
Hidrogênio , Níquel , Oxirredução , Paládio , Som , Hidrogênio/química , Paládio/química , Níquel/química , Propriedades de Superfície , Teoria da Densidade Funcional , Espectroscopia Fotoeletrônica , Ligas/química
2.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960446

RESUMO

To prevent the potential failure of the surface acoustic wave (SAW) atomizer caused by the concentration of thermal stresses, this study investigates the thermal elevation process inherent to the operation of the surface wave atomizer. Subsequently, a method for temperature regulation is proposed. By collecting the temperature rise data of SAW atomizers with water, olive oil, and glycerol at 5/6/7 Watts (W) of power, the temperature curves of the atomizer surface under different conditions are obtained, and the stress changes in the working process are simulated additionally. The results indicate that although the stress generated by surface acoustic wave atomizers varies for different media, there is always a problem of rapid heating during the initial working stage in all cases. To address the above issues, this study analyzed the time when the maximum stress occurred and proposed control methods based on experimental data. The simulation results show that by controlling the driving power within 4 s after the start of atomization, the problem of excessive stress during the heating stage can be avoided. Finally, the feasibility of the control method was verified through a simple power control method (limiting the driving power to 3 W in the first 2 s), proving that this method can effectively reduce the thermal stress during the working process of the atomizer and prevent the atomizer from cracking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...