Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nat Commun ; 15(1): 3643, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684646

RESUMO

Planting has been widely adopted to battle the loss of salt marshes and to establish living shorelines. However, the drivers of success in salt marsh planting and their ecological effects are poorly understood at the global scale. Here, we assemble a global database, encompassing 22,074 observations reported in 210 studies, to examine the drivers and impacts of salt marsh planting. We show that, on average, 53% of plantings survived globally, and plant survival and growth can be enhanced by careful design of sites, species selection, and novel planted technologies. Planting enhances shoreline protection, primary productivity, soil carbon storage, biodiversity conservation and fishery production (effect sizes = 0.61, 1.55, 0.21, 0.10 and 1.01, respectively), compared with degraded wetlands. However, the ecosystem services of planted marshes, except for shoreline protection, have not yet fully recovered compared with natural wetlands (effect size = -0.25, 95% CI -0.29, -0.22). Fortunately, the levels of most ecological functions related to climate change mitigation and biodiversity increase with plantation age when compared with natural wetlands, and achieve equivalence to natural wetlands after 5-25 years. Overall, our results suggest that salt marsh planting could be used as a strategy to enhance shoreline protection, biodiversity conservation and carbon sequestration.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Áreas Alagadas , Conservação dos Recursos Naturais/métodos , Mudança Climática , Ecossistema , Solo/química , Sequestro de Carbono , Pesqueiros , Plantas
2.
Sci Adv ; 10(16): eadl4633, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640249

RESUMO

Magnetic tunnel junctions (MTJs) are the core elements of spintronic devices. Now, the mainstream writing operation of MTJs mainly relies on electric current with high energy dissipation, which can be greatly reduced if an electric field is used instead. In this regard, strain-mediated multiferroic heterostructure composed of MTJ and ferroelectrics are promising with the advantages of room temperature and magnetic field-free as already demonstrated by MTJ with in-plane magnetic anisotropy. However, there is no such report on the perpendicular MTJs (p-MTJs), which have been commercialized. Here, we investigate electric-field control of resistance state of MgO-based p-MTJs in multiferroic heterostructures. A remarkable and nonvolatile manipulation of resistance is demonstrated at room temperature without magnetic field assistance. Through various characterizations and micromagnetic simulation, the manipulation mechanism is uncovered. Our work provides an effective avenue for manipulating p-MTJ resistance by electric fields and is notable for high density and ultralow power spintronic devices.

3.
Sci Total Environ ; 922: 171140, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38395173

RESUMO

Land use and land cover (LULC) change is one of the dominant factors contributing to coastal wetland degradation and loss. Most studies focused on LULC changes or whether they influenced on ecosystems. However, few studies quantitatively assessed the impact of different LULCs on hydrological connectivity. This study aimed to understand how LULC affected hydrological connectivity in the coastal wetlands in the Yellow River Delta (YRD), China, from 1985 to 2020. A framework from a landscape resistance perspective was used to evaluate the LULC's influence. LULCs were converted into a series of resistance surfaces whose values represent the degree to which LULC facilitated or restricted hydrological connectivity. The LULC's influence was evaluated by parameterizing the resistance surfaces using observed hydrological connectivity. The results showed that human-related LULC had more influence on hydrological connectivity. The critical time of LULC's influence on hydrological connectivity was 1985-1990 and 2010-2015. The critical areas were Zone II, Zone I, and Zone VI. The LULCs of agriculture, industry, town/city, and river had the most significant impact on the hydrological connectivity of the YRD coastal wetland. The result could direct LULC planning to mitigate the negative effect on coastal wetlands and provide support for the environmental impact assessment of coastal development practices. This paper advances the study by assessing LULCs' impact on hydrological connectivity and providing a quantitative method. The framework of this study enriches the coastal wetland conservation theory and policy-making of coastal management.

4.
J Environ Manage ; 353: 120140, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290263

RESUMO

Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove reforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how reforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of reforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects (community similarity decreases with increasing geographical distance) in metacommunity across a regional scale of 480 km (23-27 °N) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of reforestation on the mollusc community. After the mangrove reforestation, mollusc species richness and biomass increased significantly. The increases in species richness and biomass of mollusc community were mediated by reducing distance-decay effect, indicating an increase in relationship strength between species richness and biomass might be associated with a decrease in distance-decay effect with rising mangrove habitat. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning. Quantifying the distance-decay effect of these influences enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance.


Assuntos
Biodiversidade , Moluscos , Áreas Alagadas , Animais , Biomassa , Ecossistema
5.
J Environ Manage ; 353: 120215, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281422

RESUMO

Tidal channel networks, which characterize all river deltas, control the exchange of water and nutrients (hydrological connectivity) between the ocean and the delta area. Therefore, a tidal channel network in optimal conditions ensures the maintenance of the diversity and stability of the deltaic ecosystem. However, the developmental status of channel networks in the Yellow River Delta, China, has not been clearly determined. Here, we selected a typical tidal channel network in this delta that showed different spatial patterns (e.g., connectivity attributes) in the past three decades and explored its evolution using entropy as an index of connectivity. Seven scenarios were set up to determine the optimal status of the tidal channel network by optimizing its structure. The optimization effect was evaluated by comparing the connectivity attributes of the channel network before and after optimization. The results showed that the network experienced two obviously different developmental phases: an evolution before 2005 and a regression after 2005. Mann-Kendall analysis indicated that the channel network achieved dynamic stability before 2014 and became unstable thereafter. The simulations conducted to optimize the system showed that adding outlets changed the current patterns of the network' structural and functional connectivity. As the optimization proceeded, structural connectivity increased while functional connectivity decreased, and the tidal channel network tended to be dynamically stable. Our study elucidated the quantitative relationship between outlet number and stability within tidal channel networks, providing reference information that could be incorporated into future projects for the restoration and management of river deltas.


Assuntos
Ecossistema , Rios , Rios/química , China , Hidrologia
6.
Ecol Appl ; 34(1): e2813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36708094

RESUMO

Understanding the mechanisms by which the geomorphic structures affect habitat invasibility by mediating various abiotic and biotic factors is essential for predicting whether these geomorphic structures may provide spatial windows of opportunity to facilitate range-expansion of invasive species in salt marshes. Many studies have linked geomorphic landscape features such as tidal channels to invasion by exotic plants, but the role of tidal channel meanders (i.e., convex and concave sides) in regulating the Spartina alterniflora invasion remains unclear. Here, we examined the combined effects of tidal channel meander-mediated hydrodynamic variables, soil abiotic stresses, and propagule pressure on the colonization of Spartina in the Yellow River Delta, China, by conducting field observations and experiments. The results showed that lower hydrodynamic disturbance, bed shear stress, and higher propagule pressure triggered by eddies due to the convex structure of channel meanders facilitated Spartina seedling establishment and growth, whereas the concave side considerably inhibited the Spartina invasion. Lower soil abiotic stresses also significantly promoted the invasibility of the channel meanders by Spartina. Based on these findings, we propose a conceptual framework to illustrate the effects of the meandering geomorphology of tidal channels on the mechanisms that might allow the landward spread of Spartina and related processes. Our results demonstrate that the meandering geomorphic structures of tidal channels could act as stepping-stones to significantly facilitate the landward invasion of Spartina along tidal channels. This implies that geomorphic characteristics of tidal channels should be integrated into invasive species control and salt marsh management strategies.


Assuntos
Ecossistema , Áreas Alagadas , Espécies Introduzidas , Poaceae , China , Solo/química
7.
J Environ Manage ; 346: 118965, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741191

RESUMO

The decline of biodiversity can occur with a substantial delay following habitat loss, degradation, and other environmental changes, such as global warming. Considerable time lags may be involved in these responses. However, such time lags typically pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Here, we synthesize the current knowledge, categories, manifestations under different scenarios and impacts of ecological time lags. Our work reveals that studies on ecosystem structure lags are far more than ecosystem process and function lags. Due to the presence of these time-lag effects, the 'window phase' typically exists, which is widely recognized as 'relaxation time', providing a particular opportunity for biodiversity conservation. The manifestations of time lags vary under different scenarios. In addition, the different mechanisms that can result in ecological time lags are hierarchically nested, in which mechanisms at the population and metapopulation level have routinely been suggested as explanations for ecological time lags. It generally takes longer time to reach equilibrium at the metapopulation level than it takes for effects to be fully expressed at the level of individuals. Finally, we propose corresponding implications for biodiversity conservation and management. Our research will provide priorities for science and management on how to address the impact of ecological time lags to mitigate future attrition of biodiversity.

8.
J Environ Manage ; 345: 118647, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490840

RESUMO

In a large-scale region, governance for connectivity in an ecological system often conflicts with management boundaries, causing inefficiencies. Collaboration among management organizations in different areas can help overcome this problem. However, few studies quantified the collaborations' practical relationship with connectivity, considering that some potentially connected paths are easy to neglect by managers. In this paper, collaborations among government agencies in project application process were analyzed, and a multilevel social-ecological network analysis (SENA) approach was developed to identify the collaboration's effect on genetically connected coastal areas. The network framework and methods were shown in a case of coastal saltmarsh conservation and development in the Yellow River Delta, China. Collaboration patterns in conservation and development networks were analyzed and compared among local, subregional, and regional government agencies working in genetically connected coastal areas. Project information flow, reflecting communication frequency and decision-making chances among government agencies was quantified and correlated with ecological connectivity to inform governance effects. Results showed areas with the potential to realize social-ecological alignment, where collaborative networks were measured by network density (percentage of connected network edges). The current reveals that development has more significant potential than conservation at most levels to overcome the misalignment of the social-ecological system, also known as scale mismatch. Empirical evidence also showed a correlation between communication capacity in development networks and improved ecological conditions. The multilevel SENA advanced in this paper can be used for natural resource management when connectivity plays a major role.


Assuntos
Conservação dos Recursos Naturais , Meio Social , Conservação dos Recursos Naturais/métodos , Recursos Naturais , Ecossistema , Comunicação , China
9.
J Environ Manage ; 342: 118297, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269722

RESUMO

Understanding the spatiotemporal landscape dynamics and spread pathways of invasive plants, as well as their interactions with geomorphic landscape features, are of great importance for predicting and managing their future range-expansion in non-native habitats. Although previous studies have linked geomorphic landscape features such as tidal channels to plant invasions, the potential mechanisms and critical characteristics of tidal channels that affect the landward invasion by Spartina alterniflora, an aggressive plant in global coastal wetlands, remain unclear. Here, using high-resolution remote-sensing images of the Yellow River Delta from 2013 to 2020, we first quantified the evolution of tidal channel networks by analyzing the spatiotemporal dynamics of their structural and functional characteristics. The invasion patterns and pathways of S. alterniflora were then identified. Based on the above-mentioned quantification and identification, we finally quantified the influences of tidal channel characteristics on S. alterniflora invasion. The results showed that tidal channel networks presented increasing growth and development over time, and their spatial structure evolved from simple to complex. The external isolated expansion of S. alterniflora played a dominant role during the initial invasion stage, and then they connected the discrete patches into the meadow through marginal expansion. Afterwards, tidal channel-driven expansion gradually increased and became the primary way during the late invasion stage, accounting for about 47.3%. Notably, tidal channel networks with higher drainage efficiency (shorter OPL, higher D and E) attained larger invasion areas. The longer the tidal channels and the more sinuous the channel structure, the greater the invasion potential by S. alterniflora. These findings highlight the importance of structural and functional properties of tidal channel networks in driving plant invasion landward, which should be incorporated into future control and management of invasive plants in coastal wetlands.


Assuntos
Espécies Introduzidas , Áreas Alagadas , Rios , Ecossistema , Poaceae , China , Solo/química
10.
Ecotoxicol Environ Saf ; 258: 114953, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146388

RESUMO

Soil heavy metal(loid)s contamination caused by rapid urbanization and industrialization seriously affects human health and hinders the global sustainable development goals (SDGs). Currently, there is a lack of comprehensive human health risk assessment (HHRA) studies for multiple land use types at the regional scale. We propose a practical risk assessment framework that integrates empirical Bayesian kriging (EBK), pollution level analyses, and modified HHRA modeling. The concentrations of copper industry-related metals (Cu, Ni, Cd, As, and Hg) in 332 topsoil samples from the south bank of the Yangtze River in Tongling were investigated. Obvious enrichment of Cu, Cd, As, and Hg was detected, and the average concentration of Cu was 5.24 times higher than the background values. The distribution of heavy metal(loid) pollution was typically high in the south and east, and low in the north and west. The mean errors of interpolation for Cu, Ni, and Hg were 0.84, 1.29, and 0, respectively, and the root mean square errors of interpolation for Cd and As were 1.29 and 0.86, respectively. Non-carcinogenic risks of soil heavy metal(loid)s were assessed as acceptable throughout the studied area. The hazard index decreased in the order As (0.448) > Ni (0.0729) > Cd (0.0136) > Hg (9.04 ×10-4) > Cu (6.41 ×10-4). Nevertheless, the carcinogenic risks of Ni, Cd, and As in 70-80% of the administrative units (AUs) were between 10-6 to 10-4, considered an unacceptable level. Exposure through the oral ingestion route accounted for 88.0-99.2% of the total three exposure routes. It is worth noting that four AUs were considered to be the priority control units, and Ni and As were identified as the priority control soil heavy metal(loid)s. This case demonstrates the feasibility and scientific validity of the new EBK-HHRA framework, which confirms that EBK can effectively predict the spatial distribution patterns of soil heavy metal(loid)s and that modified HHRA models are conducive to risk integration at the regional scale. The EBK-HHRA approach is generic and provides substantial support for risk source identification and risk management of soil heavy metal(loid)s contamination at the regional scale.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo , Cádmio/análise , Teorema de Bayes , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , Mercúrio/análise , Análise Espacial , China
11.
Water Res ; 238: 120005, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37148691

RESUMO

Global warming is expected to increase the atmospheric evaporative demand and make more surface water for evapotranspiration, aggerating water sources' social and ecological shortage. Pan evaporation, as a routine observation worldwide, is an excellent metric to indicate the response of terrestrial evaporation to global warming. However, several non-climatic effects, such as instrument upgrades, have destroyed the homogenization of pan evaporation and limited its applications. In China, 2400s meteorological stations have observed daily pan evaporation since 1951. The observed records became discontinuous and inconsistent due to the instrument upgrade from micro-pan D20 to large-pan E601. Here, combining the Penpan model (PM) and random forest model (RFM), we developed a hybrid model to assimilate different types of pan evaporation into a consistent dataset. Based on the cross-validation test, on a daily scale, the hybrid model has a lower bias (RMSE=0.41 mm day-1) and better stability (NSE=0.94) than the two sub-models and the conversion coefficient method. Finally, we produced a homogenized daily dataset of E601 across China from 1961 to 2018. Based on this dataset, we analyzed the long-term trend of pan evaporation. Pan evaporation showed a -1.23±0.57 mm a-2 downward trend from 1961-1993, primarily caused by decreased pan evaporation in warm seasons over North China. After 1993, the pan evaporation in South China increased significantly, resulting in a 1.83±0.87 mm a-2 upward trend across China. With better homogeneity and higher temporal resolution, the new dataset is expected to promote drought monitoring, hydrological modeling, and water resources management. Free access to the dataset can be found at https://figshare.com/s/0cdbd6b1dbf1e22d757e.


Assuntos
Aquecimento Global , Água , China , Estações do Ano , Hidrologia
12.
Sci Adv ; 9(18): eabq3520, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134167

RESUMO

Self-organized patterning, resulting from the interplay of biological and physical processes, is widespread in nature. Studies have suggested that biologically triggered self-organization can amplify ecosystem resilience. However, if purely physical forms of self-organization play a similar role remains unknown. Desiccation soil cracking is a typical physical form of self-organization in coastal salt marshes and other ecosystems. Here, we show that physically self-organized mud cracking was an important facilitating process for the establishment of seepweeds in a "Red Beach" salt marsh in China. Transient mud cracks can promote plant survivorship by trapping seeds, and enhance germination and growth by increasing water infiltration in the soil, thus facilitating the formation of a persistent salt marsh landscape. Cracks can help the salt marsh withstand more intense droughts, leading to postponed collapse and faster recovery. These are indications of enhanced resilience. Our work highlights that self-organized landscapes sculpted by physical agents can play a critical role in ecosystem dynamics and resilience to climate change.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Água , Mudança Climática
13.
Adv Mater ; 35(31): e2302350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141542

RESUMO

Giant spin-orbit torque (SOT) from topological insulators (TIs) has great potential for low-power SOT-driven magnetic random-access memory (SOT-MRAM). In this work, a functional 3-terminal SOT-MRAM device is demonstrated by integrating the TI [(BiSb)2 Te3 ] with perpendicular magnetic tunnel junctions (pMTJs), where the tunneling magnetoresistance is employed for the effective reading method. An ultralow switching current density of 1.5 × 105  A cm-2 is achieved in the TI-pMTJ device at room temperature, which is 1-2 orders of magnitude lower than that in conventional heavy-metals-based systems, due to the high SOT efficiency θSH = 1.16 of (BiSb)2 Te3 . Furthermore, all-electrical field-free writing is realized by the synergistic effect of a small spin-transfer torque current during the SOT. The thermal stability factor (Δ = 66) shows the high retention time (>10 years) of the TI-pMTJ device. This work sheds light to the future low-power, high-density, and high-endurance/retention magnetic memory technology based on quantum materials.

14.
Sci Total Environ ; 877: 162803, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914127

RESUMO

The invasion of Spartina alterniflora has caused severe damage to the coastal wetland ecosystem of the Yellow River Delta, China. Flooding and salinity are key factors influencing the growth and reproduction of S. alterniflora. However, the differences in response of S. alterniflora seedlings and clonal ramets to these factors remain unclear, and it is not known how these differences affect invasion patterns. In this paper, clonal ramets and seedlings were studied separately. Through literature data integration analysis, field investigation, greenhouse experiments, and situational simulation, we demonstrated significant differences in the responses of clonal ramets and seedlings to flooding and salinity changes. Clonal ramets have no theoretical inundation duration threshold with a salinity threshold of 57 ppt (part per thousand); Seedlings have an inundation duration threshold of about 11 h/day and a salinity threshold of 43 ppt. The sensitivity of belowground indicators of two propagules-types to flooding and salinity changes was stronger than that of aboveground indicators, and it is significant for clones (P < 0.05). Clonal ramets have a larger potentially invadable area than seedlings in the Yellow River Delta. However, the actual invasion area of S. alterniflora is often limited by the responses of seedlings to flooding and salinity. In a future sea-level rise scenario, the difference in responses to flooding and salinity will cause S. alterniflora to further compress native species habitats. Our research findings can improve the efficiency and accuracy of S. alterniflora control. Management of hydrological connectivity and strict restrictions on nitrogen input to wetlands, for example, are potential new initiatives to control S. alterniflora invasion.


Assuntos
Ecossistema , Plântula , Salinidade , Rios , Áreas Alagadas , Poaceae/fisiologia , China , Células Clonais , Espécies Introduzidas
15.
Chemosphere ; 321: 138107, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773675

RESUMO

Boosting optical absorption and charge transfer of g-C3N4 is of great importance but a challenging task for developing metal-free high-performance photocatalyst. Herein, 3D-crumpled g-C3N4 (DCN) is synthesized through a direct top-down thermal etching strategy. The thermal exfoliation of layered bulk g-C3N4 (BCN) in air atmosphere induces partial distortion of heptazine-based g-C3N4 nanosheet, which further self-assemble into 3D-crumpled network structure. Spectroscopic and photoelectrochemical characterization demonstrate that the unique DCN can not only remarkably extend the visible-light response region to 600 nm by awakening the n-π* electron transition, but also significantly promote O2 activation for selective H2O2 generation owing to the intensified electron delocalization and charge transport ability. Thus, DCN catalyst realizes an excellent photocatalytic phenol degradation rate under visible light irradiation (0.690 h-1), far (4.4-fold) out from the BCN counterparts. This work enables synergistic optimization of optical absorption, charge transport and surface-active sites by constructing a 3D-crumpled structure, which expands the engineering toolbox of metal-free skeleton photocatalyst for developing practical and economical catalysts for environmental remediation.


Assuntos
Peróxido de Hidrogênio , Luz , Fenóis/química , Oxigênio
16.
J Environ Manage ; 334: 117487, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801685

RESUMO

Invasive Spartina spp. mostly colonizes a bare tidal flat and then establishes a new vegetated habitat, where it promotes the productivity of local ecosystems. However, it was unclear whether the invasive habitat could well exhibit ecosystem functioning, e.g. how its high productivity propagates throughout the food web and whether it thereby develops a high food web stability relative to native vegetated habitats. By developing quantitative food webs for a long-established invasive Spartina alterniflora habitat and adjacent native salt marsh (Suaeda salsa) and seagrass (Zostera japonica) habitats in China's Yellow River Delta, we investigated the distributions of energy fluxes, assessed the stability of food webs, and investigated the net trophic effects between trophic groups by combining all direct and indirect trophic interactions. Results showed that the total energy flux in the invasive S. alterniflora habitat was comparable to that in the Z. japonica habitat, whereas 4.5 times higher than that in the S. salsa habitat. While, the invasive habitat had the lowest trophic transfer efficiencies. Food web stability in the invasive habitat was about 3 and 40 times lower than that in the S. salsa and Z. japonica habitats, respectively. Additionally, there were strong net effects caused by intermediate invertebrate species in the invasive habitat rather than by fish species in both native habitats. This study revealed the contradiction between the promotion of energy fluxes and the decrease of food web stability resulting from the invasion of S. alterniflora, which provides new insights into the community-based management of plant invasions.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Espécies Introduzidas , Poaceae , Áreas Alagadas , China
17.
Sci Total Environ ; 859(Pt 1): 159891, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334663

RESUMO

Coastal wetlands have been enclosed by thousands of kilometers of seawalls in China to obtain extra land for rapid socio-economic development in the coastal region. Although understanding seawall-induced impacts on delta wetlands and their ecosystem can provide valuable decision-making information to support coastal management, quantifying and measuring long-term, cumulative ecological impacts of harden seawall under sea level rise (SLR) remains a vital research gap. In this study, by combining the land-use transformation trajectory analysis, ecosystem services assessment, and the SLAMM (Sea Level Affecting Marshes Model), we have explored the seawall-induced effects on temporal-spatial dynamics of tidal wetlands and the Coastal Blue Carbon storage (CBCs) in the Yellow River Delta (YRD) under the SLR by 2050 and 2100. Our study revealed that the delta wetland area would have increased by 2327.87 km2 after seawall removal without regard for SLR while increasing by 3050 km2 in 2100 in both seawall scenarios under SLR. The effects of driving processes trajectory on the changes in CBCs indicated two-sided seawall-induced impacts on the delta wetlands in the YRD, i.e., functioning as a physical coastal defense to prevent coastal erosion (before 2050) while intensifying coastal squeeze effects and quickening the loss in delta wetlands and the CBCs by hindering their inland migration under SLR. For example, the gap of CBCs between the seawall-impacting and seawall-removal scenarios would have reached at 9.94 × 106 Mg by 2050 under the SLR, and the magnitude of the final decrease effect on CBCs induced by the seawall-impacting would be nearly 5 times higher than its gain after seawall-removal in the regressive succession, while the same magnitudes in the salinization process on both scenarios. Our study has provided valuable insights for shoreline management by mitigating seawall-induced impacts on the delta wetlands and their ecosystem services such as CBCs.


Assuntos
Ecossistema , Elevação do Nível do Mar , Carbono , Áreas Alagadas , Rios
18.
J Environ Manage ; 320: 115915, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952567

RESUMO

Conservation and restoration have long been regarded as two separate management avenues to maintain or enhance ecosystem functioning. Despite the commonalities in goals, restoration is generally considered a lower priority than conservation due to its generally greater cost, uncertainties in multiple trajectories and deals with already degraded habitats. However, when resources and opportunities for meeting conservation needs are limited, restoration could be an imperative avenue to provide additional benefits from conservation. The priority of conservation and restoration should be integrated based on an identical framework cost effectively to obtain the maximum ecological benefits with minimal costs. We propose a methodological framework to integrate conservation and restoration based on theories of Systematic Conservation Planning, which could identify best integrated conservation and restoration pattern in a cost-effective way on the basis of the provisions of multiple ecosystem services (i.e., carbon storage, water yield, soil retention and habitat quality). The trade-offs among four ecosystem services are assessed with an each of 10% increment in the target levels of ecosystem services. We demonstrated our approach at a regional scale, in the Dongting Lake Area, China. Our results showed that conservation is prioritized in a higher proportion of the study area when the targets are low. When the target level became higher, restoration gained more importance with growing area. This highlights that restoration pattern is indispensable when target setting become high and the integrated conservation and restoration planning is more cost efficient than that of conservation alone. Improving the carbon storage and soil retention would also contribute greatly to an increase in other ecosystems, but increasing the water yield and habitat quality would not guarantee an improvement for others. Integrated conservation and restoration planning will facilitate refine target achievement of conservation and restoration recommendations, by the trade-offs between conservation and restoration, and among different ecosystem services, our prioritization framework provides a useful insight in implementing the integrated planning, which can improve the efficiency in increasing ecosystem services compared to use either conservation or restoration ways.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Carbono , China , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Solo , Água
19.
ACS Nano ; 16(8): 12727-12737, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943059

RESUMO

The understanding and control of the spin-orbit torque (SOT) are central to antiferromagnetic spintronics. Despite the fact that a giant SOT efficiency has been achieved in numerous materials, its efficient tuning in a given material has not been established. Materials with magnetic phase transitions (MPTs) offer a new perspective, as the SOT efficiency may vary significantly for the different magnetic orderings across the transition, and the transition itself can be readily tuned by various control parameters. This work reports that the SOT efficiency of a FeRh-based perpendicular magnetized heterostructure can be significantly tuned by varying the temperature across the MPT. The SOT efficiency exhibits a temperature hysteresis associated with the first-order nature of the MPT, and its value in the ferromagnetic phase is seen to be enhanced by ∼450%, simply by a lowering of temperature to drive FeRh into the antiferromagnetic phase. Furthermore, current-induced magnetization switching can be achieved without an assistant magnetic field for both ferromagnetic and antiferromagnetic FeRh, with a low critical switching current density for the latter. These results not only directly establish FeRh as an efficient spin generator but also present a strategy to dynamically tune SOT via varying the temperature across MPTs.

20.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683740

RESUMO

The spin-orbit torques (SOTs) in the heavy metal (HM)/ferromagnetic metal (FM) structure hold promise for next-generation low-power and high-density spintronic memory and logic applications. For the SOT switching of a perpendicular magnetization, an external magnetic field is inevitable for breaking the mirror symmetry, which is not practical for high-density nanoelectronics applications. In this work, we study the current-induced field-free SOT switching and SOT perpendicular effective field (Hzeff) in a variety of laterally asymmetric multilayers, where the asymmetry is introduced by growing the FM layer in a wedge shape. We show that the design of structural asymmetry by wedging the FM layer is a universal scheme for realizing field-free SOT switching. Moreover, by comparing the FM layer thickness dependence of (Hzeff) in different samples, we show that the efficiency (ß =Hzeff/J, J is the current density) is sensitive to the HM/FM interface and the FM layer thickness. The sign of ß for thin FM thicknesses is related to the spin Hall angle (θSH) of the HM layer attached to the FM layer. ß changes its sign with the thickness of the FM layer increasing, which may be caused by the thickness dependence of the work function of FM. These results show the possibility of engineering the deterministic field-free switching by combining the symmetry breaking and the materials design of the HM/FM interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...