Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Genet ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164964

RESUMO

Fatty liver disease is a common metabolic disease in chickens. This disease can lead to a decrease in egg production and increase the risk of death in chickens. Long non-coding RNAs (lncRNAs) are involved in fatty liver formation by directly targeting genes or regulating gene expression by competitively binding microRNAs. However, a large proportion of competing endogenous RNA (ceRNA) networks in fatty liver diseases are still unclear. The total of 300 Jingxing-Huang chickens were used for fatty liver model construction. Then, differentially expressed (DE) genes (DEGs) identified through whole-transcriptome sequencing from four chickens with fatty liver and four chickens without fatty liver were chosen from the F1 generation. A total of 953 DEGs were identified between the fatty liver group and the control group, including 26 DE micro (mi)RNAs and 56 DE lncRNAs. Differential expression heatmaps and volcano plots were obtained after clustering expression analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these DEGs were involved in many biological processes and signaling pathways related to fatty acid metabolism and lipid synthesis. Furthermore, cytoscape was used to construct a ceRNA network of the DE miRNAs, DE mRNAs, and DE lncRNAs. Eleven DE lncRNAs, seven DE miRNAs, and 13 DE mRNAs were found to be associated with the pathogenesis of fatty liver disease. An lncRNA-miRNA-mRNA ceRNA network was constructed to elucidate the mechanisms of fatty liver diseases, and the ENSGALT00000079786-miR-140/miR-143/miR-1a/miR-22/miR-375 network was identified. These results provide a valuable resource for further elucidating the posttranscriptional regulatory mechanisms of chicken liver and adipose fat development or deposition.

2.
Poult Sci ; 103(8): 103927, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917607

RESUMO

Goose creates important economic value depending on their enrich nutrients of meat. Our previous study investigates potential candidate genes associated with variations in meat quality between Xianghai Flying (XHF) Goose and Zi Goose through genomic and transcriptome integrated analysis. Screening of 5 differential expression candidate genes related to muscle development identified by the FST, XP-EHH and RNA-seq in breast muscle from various geese. Among them, C1QTNF1 (C1q and TNF related protein 1), a gene of unknown function in goose, which observed mutations in coding sequence regions in sequencing data. Its function was explored after overexpression and knockdown which designed depending on the genetic sequence of the goose, respectively. Results showed that over-expression of C1QTNF1 significantly enhances cell proliferation and viability. In addition, the expression levels of the fusion marker gene Myomaker and the differentiation marker gene MyoD are significantly upregulated in cells. Knock-down C1QTNF1 leads to down regulated Myomaker and MyoD which involved muscle formation. But, the expression level of muscle atrophy marker MuRF is not significantly changed among different transfection groups. Since protein structures and interactions are closely related to their functions, we further analyzed the C1QTNF1 for physicochemical properties, structural predictions, protein interactions and homology. It can be reasonably inferred that C1QTNF1 has a similar effect to collagen, which may affect muscle development. In summary, we first speculate that C1QTNF1 may play an important regulatory role in muscle growth and development and thereby contributes to the further understanding of the genetic mechanisms that underlie meat quality traits of goose.


Assuntos
Proteínas Aviárias , Proliferação de Células , Gansos , Carne , Animais , Gansos/genética , Gansos/crescimento & desenvolvimento , Gansos/fisiologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Carne/análise , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA