Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274105

RESUMO

In this paper, microcapsules with acidic pH stimulus responsiveness were prepared through a one-step in situ polymerization method and a layer-by-layer assembly method. The effects of factors such as chitosan (CS) concentration, polymerization time, polymerization process temperature, and the number of polymerization layers on the performance of microcapsules were explored, and microcapsules with optimal performance were prepared and added to the epoxy coating. The morphology and structure of the microcapsules were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential testing. The thermal stability and sustained release properties of the microcapsules were studied through thermogravimetric analysis and sustained release curve testing. Through scratch experiments, immersion experiments, salt spray experiments, and electrochemical impedance spectroscopy tests, the impact of the added amount of microcapsules on the self-healing performance and anti-corrosion performance of the coating in complex environments was explored. The results show that the optimal preparation process of acidic pH-responsive microcapsules requires that the concentration of chitosan is 2 mg/mL, the polymerization time of the polyelectrolyte layer is 8 h, the heating temperature during the polymerization process is 75 °C, and the number of polyelectrolyte layers is three. The prepared acidic pH-responsive microcapsules have good morphology, pH sensitivity, and thermal stability. The average particle size is approximately 203 µm, the drug loading rate reaches 59.74%, and the encapsulation rate reaches 63.99%. The optimal added amount of the acidic pH-responsive microcapsule coating is 15 wt%. The coating has a dual-trigger mechanism underlying it stimulus response capability and has an obvious stimulus response to acidic pH. It can inhibit corrosion in non-scratch areas, and its anti-corrosion ability is significantly stronger than that of epoxy coatings and ordinary self-healing coatings. The coating has a stronger repair effect and anti-corrosion ability when the environmental pH becomes acidic.

2.
Polymers (Basel) ; 13(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069742

RESUMO

In order to improve the corrosion resistance of zinc-rich epoxy coatings and reduce the amount of zinc used, first, graphene oxide (GO) was modified by sulfonated multiwall carbon nanotubes (SMWCNTs) to obtain the modified graphene oxide (SM-GO). The samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Raman spectroscopy. Then, four kinds of coatings were prepared, namely pure zinc-rich coating (0-ZRC), graphene oxide-based zinc-rich coating (GO-ZRC), sulfonated multiwall carbon nanotube-based zinc-rich coating (SM-ZRC) and SM-GO-based zinc-rich coating (SG-ZRC). The corrosion resistance of the above coatings was studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), a salt spray test, 3D confocal microscope, and electron scanning electron microscope (SEM). The results indicate that GO is successfully non-covalently modified by SMWCNTs, of which the interlayer spacing increases and dispersion is improved. The order of the corrosion resistance is GO-ZRC > SG-ZRC > SM-ZRC > 0-ZRC. The addition of GO, SMWCNTs, and SM-GO increases the shielding effect and increases the electrical connection between Zn particles and metal substrates, which improves the corrosion resistance. However, SMWCNTs and SM-GO also strengthen the galvanic corrosion, which decreases the corrosion resistance to some extent.

3.
Materials (Basel) ; 13(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158092

RESUMO

In the current study, the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs, and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs, thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model, the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system, <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence, the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure, and a theoretical model is then developed to predict the intergranular cracking rate.

4.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1764-1768, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29902883

RESUMO

High price and difficult to get of reference substance have become obstacles to HPLC assay of ethnic medicine. A new method based on quantitative reference herb (QRH) was proposed. Specific chromatograms in fruits of Capsicum frutescens were employed to determine peak positions, and HPLC quantitative reference herb was prepared from fruits of C. frutescens. The content of capsaicin and dihydrocapsaicin in the quantitative control herb was determined by HPLC. Eleven batches of fruits of C. frutescens were analyzed with quantitative reference herb and reference substance respectively. The results showed no difference. The present method is feasible for quality control of ethnic medicines and quantitative reference herb is suitable to replace reference substances in assay.


Assuntos
Capsicum , Plantas Medicinais , Capsaicina , Cromatografia Líquida de Alta Pressão , Frutas , Medicina Tradicional Tibetana
5.
Zhongguo Zhong Yao Za Zhi ; 42(15): 3011-3016, 2017 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-29139272

RESUMO

The present study is to compare specific chromatograms and main acitive components between wild and cultivated rhizomes of Paris polyphylla var. yunnanensis by HPLC. HPLC analysis was performed on a Waters XSelect HSS T3 C18 clumn (4.6 mm×250 mm, 5 µm), with a mobile phase consisting of acetonitrile (A)-water (B) at a flow rate of 1 mL•min⁻¹ (0-50 min,30%-50%A;50-80 min,50% A,80-85 min,50%-30%A;85-100 min,30% A). The detection wavelength was 203 nm and the column temperature was controlled at 30 ℃, and the injection volume was 10 µL. HPLC specific chromatograms of wild and cultivated rhizomes of P. polyphylla var. yunnanensis were established and nine steroidal saponins were simultaneously determined by the above method. The mean contents of paris saponin Ⅶ, paris saponin H and total average contents of four pennogenyl saponins in Rhizomes of wild samples were significantly higher than those of cultivated ones. However, this result is opposite from the average content of paris saponin Ⅰ and total average contents of five dioscins in the wild and cultivated samples. Because the significant differences occurred for the specific chromatograms and main active components between the wild and cultivated P. polyphylla var. yunnanensis, much more pharmacological and clinical researches are therefore necessary.


Assuntos
Melanthiaceae/química , Compostos Fitoquímicos/análise , Rizoma/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA