Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2097, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453935

RESUMO

Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.


Assuntos
Termotolerância , Triticum , Triticum/fisiologia , Termotolerância/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Resposta ao Choque Térmico/genética , China
2.
J Integr Plant Biol ; 65(12): 2587-2603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846823

RESUMO

Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution, and is commonly employed in wheat breeding programs. Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination, but the underlying mechanism is poorly understood. Here, we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid (Triticum durum, AABB) and hexaploid wheat (Triticum aestivum, AABBDD). In the paternal- versus the maternal-excess cross, the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed, causing reduced germination percentage. The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types. Furthermore, expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses, leading to increased number of imprinted genes. The endosperm-specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele-specific DNA methylation. Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019, leading to reduced storage protein and starch accumulation during endosperm development in paternal-excess cross, as confirmed by interploidy crosses between tetraploid wild-type and clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 generated hexaploid mutants. These findings reveal a contribution of genomic imprinting to paternal-excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal-excess interploidy crosses in wheat breeding programs.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/metabolismo , Triticum/genética , Sementes/genética , Tetraploidia , Melhoramento Vegetal , Isolamento Reprodutivo , Cruzamentos Genéticos , Endosperma/genética , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...