Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37685168

RESUMO

The structure of the grain-and-oil-food-supply chain has the characteristics of complexity, cross-regionality, a long cycle, and numerous participants, making it difficult to maintain the safety of supply. In recent years, some phenomena have emerged in the field of grain procurement and sale, such as topping the new with the old, rotating grains, the pressure of grades and prices, and counterfeit oil food, which have seriously threatened grain-and-oil-food security. Blockchain technology has the advantage of decentralization and non-tampering Therefore, this study analyzes the characteristics of traceability data in the grain-and-oil-food-supply chain, and presents a blockchain-based traceability model for the grain-and-oil-food-supply chain. Firstly, a new method combining blockchain and machine learning is proposed to enhance the authenticity and reliability of blockchain source data by constructing anomalous data-processing models. In addition, a lightweight blockchain-storage method and a data-recovery mechanism are proposed to reduce the pressure on supply-chain-data storage and improve fault tolerance. The results indicate that the average query delay of public data is 0.42 s, the average query delay of private data is 0.88 s, and the average data-recovery delay is 1.2 s. Finally, a blockchain-based grain-and-oil-food-supply-chain traceability system is designed and built using Hyperledger Fabric. Compared with the existing grain-and-oil-food-supply chain, the model constructed achieves multi-source heterogeneous data uploading, lightweight storage, data recovery, and traceability in the supply chain, which are of great significance for ensuring the safety of grain-and-oil food in China.

2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446112

RESUMO

The frequency range of terahertz waves (THz waves) is between 0.1 and 10 THz and they have properties such as low energy, penetration, transients, and spectral fingerprints, which are especially sensitive to water. Terahertz, as a frontier technology, have great potential in interpreting the structure of water molecules and detecting biological water conditions, and the use of terahertz technology for water detection is currently frontier research, which is of great significance. Firstly, this paper introduces the theory of terahertz technology and summarizes the current terahertz systems used for water detection. Secondly, an overview of theoretical approaches, such as the relaxation model and effective medium theory related to water detection, the relationship between water molecular networks and terahertz spectra, and the research progress of the terahertz detection of water content and water distribution visualization, are elaborated. Finally, the challenge and outlook of applications related to the terahertz wave detection of water are discussed. The purpose of this paper is to explore the research domains on water and its related applications using terahertz technology, as well as provide a reference for innovative applications of terahertz technology in moisture detection.


Assuntos
Tecnologia , Água , Água/química
3.
Nanomaterials (Basel) ; 10(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858933

RESUMO

Ammonia modified graphene-carbon nanotubes/continuous carbon fiber reinforced epoxy unidirectional multiscale composites (AMGNS-MWCNT/CFEP) were prepared by adding ammonia modified graphene and carbon nanotubes to an epoxy matrix to reduce agglomeration of carbon nanofillers in the epoxy matrix and improve composites properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and universal testing machines were used to characterize the properties of carbon nanofillers, AMGNS-MWCNT/epoxy nanocomposites, and AMGNS-MWCNT/CFEP unidirectional composites. When the AMGNS-MWCNT content was 1.0 wt%, flexural strength, the flexural modulus and interlaminar shear strength of AMGNS-MWCNT/CFEP unidirectional composites reached the maximum value of 1520.3 MPa, 138.88 GPa, and 87.80 MPa, respectively, which were 12.5%, 9.42%, and 10.1% higher than that of carbon fiber reinforced epoxy unidirectional composites (CFEP). The synergistic mechanism of two carbon nanofillers in the matrix is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA