Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614090

RESUMO

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Assuntos
Diferenciação Celular , Cromatina , Código das Histonas , Histonas , Células Th2 , Diferenciação Celular/imunologia , Animais , Cromatina/metabolismo , Camundongos , Células Th2/imunologia , Histonas/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Região de Controle de Locus Gênico , Citocinas/metabolismo
2.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280375

RESUMO

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismo
3.
Nucleic Acids Res ; 51(12): 6172-6189, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177993

RESUMO

The spatial folding of eukaryotic genome plays a key role in genome function. We report here that our recently developed method, Hi-TrAC, which specializes in detecting chromatin loops among accessible genomic regions, can detect active sub-TADs with a median size of 100 kb, most of which harbor one or two cell specifically expressed genes and regulatory elements such as super-enhancers organized into nested interaction domains. These active sub-TADs are characterized by highly enriched histone mark H3K4me1 and chromatin-binding proteins, including Cohesin complex. Deletion of selected sub-TAD boundaries have different impacts, such as decreased chromatin interaction and gene expression within the sub-TADs or compromised insulation between the sub-TADs, depending on the specific chromatin environment. We show that knocking down core subunit of the Cohesin complex using shRNAs in human cells or decreasing the H3K4me1 modification by deleting the H3K4 methyltransferase Mll4 gene in mouse Th17 cells disrupted the sub-TADs structure. Our data also suggest that super-enhancers exist as an equilibrium globule structure, while inaccessible chromatin regions exist as a fractal globule structure. In summary, Hi-TrAC serves as a highly sensitive and inexpensive approach to study dynamic changes of active sub-TADs, providing more explicit insights into delicate genome structures and functions.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Técnicas Genéticas , Sequências Reguladoras de Ácido Nucleico , Animais , Humanos , Camundongos , Montagem e Desmontagem da Cromatina , Genoma
4.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040761

RESUMO

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Interferon gama/genética , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sequências Reguladoras de Ácido Nucleico , Homeostase , Células Th1 , Mamíferos
5.
Cell Rep ; 42(2): 112073, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735533

RESUMO

Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.


Assuntos
Imunidade Inata , Interleucina-33 , Animais , Camundongos , Células Th2 , Linfócitos/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo
6.
Nat Commun ; 13(1): 6679, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335136

RESUMO

The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Genoma , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
7.
Nat Commun ; 13(1): 6069, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241625

RESUMO

Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-ß), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-ß and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.


Assuntos
Interleucina-4 , Interleucina-9 , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Interleucina-4/metabolismo , Proteínas Repressoras/genética , RNA Interferente Pequeno/metabolismo , Serina/metabolismo , Linfócitos T Auxiliares-Indutores , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(34): e2207009119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969760

RESUMO

Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.


Assuntos
Montagem e Desmontagem da Cromatina , Células Dendríticas , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/citologia , Regulação da Expressão Gênica , Camundongos
9.
Immunity ; 55(8): 1402-1413.e4, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882235

RESUMO

The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.


Assuntos
Imunidade Inata , Linfócitos , Diferenciação Celular , Linhagem da Célula , Epigênese Genética , Células-Tronco Hematopoéticas
10.
Immunity ; 55(4): 639-655.e7, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35381213

RESUMO

Adaptive CD4+ T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation.


Assuntos
Imunidade Inata , Interleucina-18 , Células Matadoras Naturais , Células Th1 , Diferenciação Celular , Interleucina-18/metabolismo , Células Matadoras Naturais/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Fatores de Transcrição/metabolismo
11.
Mol Reprod Dev ; 88(2): 141-157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33469999

RESUMO

BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.


Assuntos
Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/fisiologia , Espermatogênese/genética , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , DNA/metabolismo , Masculino , Meiose/genética , Meiose/fisiologia , Camundongos , Regiões Promotoras Genéticas , Espermátides/fisiologia , Espermatogênese/fisiologia
12.
Front Genet ; 11: 850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849830

RESUMO

Erythropoiesis of human hematopoietic stem cells (HSCs) maintains generation of red blood cells throughout life. However, little is known how human erythropoiesis is regulated by long non-coding RNAs (lncRNAs). By using ChIRP-seq, we report here that the lncRNA steroid receptor RNA activator (SRA) occupies chromatin, and co-localizes with CTCF, H3K4me3, and H3K27me3 genome-wide in human erythroblast cell line K562. CTCF binding sites that are also occupied by SRA are enriched for either H3K4me3 or H3K27me3. Transcriptome-wide analyses reveal that SRA facilitates expression of erythroid-associated genes, while repressing leukocyte-associated genes in both K562 and CD36-positive primary human proerythroblasts derived from HSCs. We find that SRA-regulated genes are enriched by both CTCF and SRA bindings. Further, silencing of SRA decreases expression of the erythroid-specific markers TFRC and GYPA, and down-regulates expression of globin genes in both K562 and human proerythroblast cells. Taken together, our findings establish that the lncRNA SRA occupies chromatin, and promotes transcription of erythroid genes, therefore facilitating human erythroid transcriptional program.

13.
Genome Res ; 30(8): 1097-1106, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759226

RESUMO

Although mammalian genomes are diploid, previous studies extensively investigated the average chromatin architectures without considering the differences between homologous chromosomes. We generated Hi-C, ChIP-seq, and RNA-seq data sets from CD4 T cells of B6, Cast, and hybrid mice, to investigate the diploid chromatin organization and epigenetic regulation. Our data indicate that inter-chromosomal interaction patterns between homologous chromosomes are similar, and the similarity is highly correlated with their allelic coexpression levels. Reconstruction of the 3D nucleus revealed that distances of the homologous chromosomes to the center of nucleus are almost the same. The inter-chromosomal interactions at centromere ends are significantly weaker than those at telomere ends, suggesting that they are located in different regions within the chromosome territories. The majority of A|B compartments or topologically associated domains (TADs) are consistent between B6 and Cast. We found 58% of the haploids in hybrids maintain their parental compartment status at B6/Cast divergent compartments owing to cis effect. About 95% of the trans-effected B6/Cast divergent compartments converge to the same compartment status potentially because of a shared cellular environment. We showed the differentially expressed genes between the two haploids in hybrid were associated with either genetic or epigenetic effects. In summary, our multi-omics data from the hybrid mice provided haploid-specific information on the 3D nuclear architecture and a rich resource for further understanding the epigenetic regulation of haploid-specific gene expression.


Assuntos
Quimera/genética , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/genética , Genoma/genética , Animais , Linfócitos T CD4-Positivos/citologia , Núcleo Celular/genética , Cromossomos/genética , Diploide , Epigênese Genética/genética , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
14.
Blood ; 135(25): 2252-2265, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32181817

RESUMO

Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Autorrenovação Celular , Proteínas de Ligação a DNA/fisiologia , Proteínas com Domínio LIM/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timócitos/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Antígenos CD/biossíntese , Transformação Celular Neoplásica , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Deleção de Genes , Técnicas de Introdução de Genes , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Linfopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proto-Oncogene Mas , RNA-Seq , Quimera por Radiação , Tolerância a Radiação , Timócitos/metabolismo , Timócitos/efeitos da radiação , Timócitos/transplante
15.
Development ; 147(8)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32122991

RESUMO

The Drosophila male germline stem cell (GSC) lineage provides a great model to understand stem cell maintenance, proliferation, differentiation and dedifferentiation. Here, we use the Drosophila GSC lineage to systematically analyze the transcriptome of discrete but continuously differentiating germline cysts. We first isolated single cysts at each recognizable stage from wild-type testes, which were subsequently applied for RNA-seq analyses. Our data delineate a high-resolution transcriptome atlas in the entire male GSC lineage: the most dramatic switch occurs from early to late spermatocyte, followed by the change from the mitotic spermatogonia to early meiotic spermatocyte. By contrast, the transit-amplifying spermatogonia cysts display similar transcriptomes, suggesting common molecular features among these stages, which may underlie their similar behavior during both differentiation and dedifferentiation processes. Finally, distinct differentiating germ cell cyst samples do not exhibit obvious dosage compensation of X-chromosomal genes, even considering the paucity of X-chromosomal gene expression during meiosis, which is different from somatic cells. Together, our single cyst-resolution, genome-wide transcriptional profile analyses provide an unprecedented resource to understand many questions in both germ cell biology and stem cell biology fields.


Assuntos
Linhagem da Célula/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Bases de Dados Genéticas , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose/genética , Mitose/genética , Família Multigênica , Reprodutibilidade dos Testes , Espermatócitos/citologia , Espermatócitos/metabolismo , Espermatogênese/genética , Transcrição Gênica , Transcriptoma/genética
16.
Cell Death Dis ; 11(2): 91, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019910

RESUMO

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Genomic studies have revealed that HCC is a heterogeneous disease with multiple subtypes. BRG1, encoded by the SMARCA4 gene, is a key component of SWI/SNF chromatin-remodeling complexes. Based on TCGA studies, somatic mutations of SMARCA4 occur in ~3% of human HCC samples. Additional studies suggest that BRG1 is overexpressed in human HCC specimens and may promote HCC growth and invasion. However, the precise functional roles of BRG1 in HCC remain poorly delineated. Here, we analyzed BRG1 in human HCC samples as well as in mouse models. We found that BRG1 is overexpressed in most of human HCC samples, especially in those associated with poorer prognosis. BRG1 expression levels positively correlate with cell cycle and negatively with metabolic pathways in the Cancer Genome Atlas (TCGA) human HCC data set. In a murine HCC model induced by c-MYC overexpression, ablation of the Brg1 gene completely repressed HCC formation. In striking contrast, however, we discovered that concomitant deletion of Brg1 and overexpression of c-Met or mutant NRas (NRASV12) triggered HCC formation in mice. Altogether, the present data indicate that BRG1 possesses both oncogenic and tumor-suppressing roles depending on the oncogenic stimuli during hepatocarcinogenesis.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , DNA Helicases/genética , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Oncogenes , Fatores de Transcrição/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , DNA Helicases/metabolismo , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes ras , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Transcrição/metabolismo
17.
Nat Commun ; 11(1): 35, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911623

RESUMO

The molecular pathways underlying the development of innate lymphoid cells (ILCs) are mostly unknown. Here we show that TGF-ß signaling programs the development of ILC2s from their progenitors. Specifically, the deficiency of TGF-ß receptor II in bone marrow progenitors results in inefficient development of ILC2s, but not ILC1s or ILC3s. Mechanistically, TGF-ß signaling is required for the generation and maintenance of ILC2 progenitors (ILC2p). In addition, TGF-ß upregulates the expression of the IL-33 receptor gene Il1rl1 (encoding IL-1 receptor-like 1, also known as ST2) in ILC2p and common helper-like innate lymphoid progenitors (CHILP), at least partially through the MEK-dependent pathway. These findings identify a function of TGF-ß in the development of ILC2s from their progenitors.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Diferenciação Celular , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Células-Tronco/citologia , Células-Tronco/imunologia
18.
Immunity ; 52(1): 83-95.e4, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882362

RESUMO

Lymphoid tissue inducer (LTi) cells are regarded as a subset of innate lymphoid cells (ILCs). However, these cells are not derived from the ILC common progenitor, which generates other ILC subsets and is defined by the expression of the transcription factor PLZF. Here, we examined transcription factor(s) determining the fate of LTi progenitors versus non-LTi ILC progenitors. Conditional deletion of Gata3 resulted in the loss of PLZF+ non-LTi progenitors but not the LTi progenitors that expressed the transcription factor RORγt. Consistently, PLZF+ non-LTi progenitors expressed high amounts of GATA3, whereas GATA3 expression was low in RORγt+ LTi progenitors. The generation of both progenitors required the transcriptional regulator Id2, which defines the common helper-like innate lymphoid progenitor (ChILP), but not cytokine signaling. Nevertheless, low GATA3 expression was necessary for the generation of functionally mature LTi cells. Thus, differential expression of GATA3 determines the fates and functions of distinct ILC progenitors.


Assuntos
Fator de Transcrição GATA3/biossíntese , Células-Tronco/citologia , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linhagem da Célula/imunologia , Células Cultivadas , Fator de Transcrição GATA3/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Receptor de Morte Celular Programada 1/biossíntese , Proteína com Dedos de Zinco da Leucemia Promielocítica/biossíntese , Células-Tronco/imunologia , Subpopulações de Linfócitos T/imunologia
19.
Nat Methods ; 16(4): 323-325, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923384

RESUMO

Our method for analyzing histone modifications, scChIC-seq (single-cell chromatin immunocleavage sequencing), involves targeting of the micrococcal nuclease (MNase) to a histone mark of choice by tethering to a specific antibody. Cleaved target sites are then selectively PCR amplified. We show that scChIC-seq reliably detects H3K4me3 and H3K27me3 target sites in single human white blood cells. The resulting data are used for clustering of blood cell types.


Assuntos
Cromatina/química , Histonas/química , Nuclease do Micrococo/química , Animais , Anticorpos/química , Imunoprecipitação da Cromatina , Biologia Computacional , DNA/química , Epigenômica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Código das Histonas , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Camundongos , Células NIH 3T3 , Nucleossomos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Software
20.
JACC Basic Transl Sci ; 4(1): 1-14, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847414

RESUMO

Psoriasis is an inflammatory skin disease associated with increased cardiovascular risk and serves as a reliable model to study inflammatory atherogenesis. Because neutrophils are implicated in atherosclerosis development, this study reports that the interaction among low-density granulocytes, a subset of neutrophils, and platelets is associated with a noncalcified coronary plaque burden assessed by coronary computed tomography angiography. Because early atherosclerotic noncalcified burden can lead to fatal myocardial infarction, the low-density granulocyte-platelet interaction may play a crucial target for clinical intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...