Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453124

RESUMO

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Assuntos
Penaeidae , Vibrioses , Animais , Vibrio alginolyticus/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Lipídeos , Penaeidae/microbiologia , Imunidade Inata/genética , Hemócitos/metabolismo , Proteínas de Artrópodes/química
2.
Dev Comp Immunol ; 139: 104542, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122733

RESUMO

Andrographis paniculata (AP) is a traditional medicinal plant with many pharmacological activities, including anti-inflammatory, antimicrobial, immunity stimulation and so on. Several studies have reported that AP plays a strong role in promoting the immune system of aquatic animals to resist several pathogens. In the present study, we investigate the effects of a diet containing AP on the immune responses, growth, and the resistance to Vibrio alginolyticus (V. alginolyticus) in Litopenaeus vannamei (L. vannamei). Four diets were formulated by adding AP at the dosage of 0% (Control), 0.25%, 0.5%, and 1% in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 28-day feeding trial. The results showed that dietary AP improved the growth performance and non-specific immune function of shrimps. To investigate the effect of AP on disease resistance of L. vannamei, shrimps fed with diet containing AP were challenged with V. alginolyticus. Compared with the control group, the shrimps fed diet containing AP showed significantly higher survival. Furthermore, the hepatopancreas injury in the shrimp fed with AP was less than control group at 6 h after V. alginolyticus infection. However, no difference was observed in the degree of hepatopancreas injury between AP groups and control group at 12 h and 24 h after V. alginolyticus infection. Based on this result, the samples at 6 h after V. alginolyticus infection was selected for subsequent detection. Reactive oxygen species (ROS) accumulation in hemocytes and O2- production in hepatopancreas caused by V. alginolyticus infection was significantly reduced after feeding a diet containing 0.25% and 0.5% AP (p < 0.05). In addition, we found that feeding AP significantly up-regulated the expression of pro-apoptotic genes (Bax, Caspase 3, p53) and down-regulated the expression of anti-apoptotic genes (Bcl-2) in hepatopancreas after V. alginolyticus infection. In conclusion, AP promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating the oxidative damage and apoptosis. These results provide useful information regarding the effects of AP extracts as a shrimp feed additive for sustainable shrimp culture.


Assuntos
Estresse Oxidativo , Vibrio alginolyticus , Animais , Apoptose , Imunidade Inata
3.
Front Immunol ; 13: 990297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159825

RESUMO

Vibrio alginolyticus (V. alginolyticus) is one of the major pathogens causing mass mortality of shrimps worldwide, affecting energy metabolism, immune response and development of shrimps. In the context of the prohibition of antibiotics, it is necessary to develop a drug that can protect shrimp from V. alginolyticus. Andrographolide (hereinafter called Andr), a traditional drug used in Chinese medicine, which possesses diverse biological effects including anti-bacteria, antioxidant, immune regulation. In this study, we investigated the effect of Andr on growth, immunity, and resistance to V. alginolyticus infection of Litopenaeus vannamei (L. vannamei) and elucidate the underlying molecular mechanisms. Four diets were formulated by adding Andr at the dosage of 0 g/kg (Control), 0.5 g/kg, 1 g/kg, and 2 g/kg in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 4-week feeding trial. The results showed that dietary Andr improved the growth performance and non-specific immune function of shrimps. L. vannamei fed with Andr diets showed lower mortality after being challenged by V. alginolyticus. After 6 h of V. alginolyticus infection, reactive oxygen species (ROS) production, tissue injury, apoptosis, expression of inflammatory factors (IL-1 ß and TNFα) and apoptosis-related genes (Bax, caspase3 and p53) were increased in hemocytes and hepatopancreas, while feeding diet with 0.5 g/kg Andr could inhibit the increase. Considering that JNK are important mediators of apoptosis, we examined the influence of Andr on JNK activity during V. alginolyticus infection. We found that Andr inhibited JNK activation induced by V. alginolyticus infection on L. vannamei. The ROS scavenger N-acetyl-l-cysteine (NAC) suppressed V. alginolyticus-induced inflammation and apoptosis, suggesting that ROS play an important role in V. alginolyticus-induced inflammation and apoptosis. Treated cells with JNK specific activator anisomycin, the inflammation and apoptosis inhibited by Andr were counteracted. Collectively, Andr promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. These results improve the understanding of the pathogenesis of V. alginolyticus infection and provide clues to the development of effective drugs against V. alginolyticus.


Assuntos
Penaeidae , Vibrio alginolyticus , Acetilcisteína/farmacologia , Animais , Anisomicina , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Apoptose , Diterpenos , Imunidade Inata , Inflamação , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2
4.
Fish Shellfish Immunol ; 123: 238-247, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278640

RESUMO

Vibrio alginolyticus is a devastating bacterial pathogen of Pacific white shrimp (Litopenaeus vannamei), which often causes acute hepatopancreatic necrosis syndrome (AHPNS) and early mortality syndrome (EMS). Elucidation of molecular mechanisms of L. vannamei in responding to infection is essential for controlling the epidemic. In the present study, transcriptomic profiles of L. vannamei hepatopancreas were explored by injecting with PBS or V. alginolyticus. Hepatopancreas morphology of L. vannamei was also assessed. The result reveals that compared with the hepatopancreas of PBS group, the storage cells (R-cell), secretory cells (B-cell) and star-shaped polygonal structures of the lumen were disappeared and necrotic after challenged by V. alginolyticus at 24 h. Transcriptome data showed that a total of 314 differential expression genes were induced by V. alginolyticus, with 133 and 181 genes up- and down-regulated, respectively. These genes were mainly associated with lysosome pathway, glycerophospholipid metabolism, drug metabolism-other enzymes, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis and PPAR signal pathway. Among these pathways, the lysosome pathway, glycerophospholipid metabolism and PPAR signal pathway were both related with lipid metabolism. Therefore, we detected the lipid accumulation in hepatopancreas by Oil Red O staining, TG and CHOL detection and the relative mRNA expression of several lipid metabolism related genes in the hepatopancreas of shrimp after challenge to V. alginolyticus. The present data reveals that lipids from the L. vannamei are nutrient sources for the V. alginolyticus and define the fate of the infection by modulating lipid homeostasis. These findings may have important implication for understanding the L. vannamei and V. alginolyticus interactions, and provide a substantial dataset for further research and may deliver the basis for preventing the bacterial diseases.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Perfilação da Expressão Gênica , Glicerofosfolipídeos/metabolismo , Hepatopâncreas/metabolismo , Imunidade Inata/genética , Lipídeos , Penaeidae/microbiologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Vibrio alginolyticus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...