Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(25): 5329-5334, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869223

RESUMO

Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.

2.
Int J Biol Macromol ; 155: 14-26, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32220642

RESUMO

Poly(l-lactic acid) (PLLA) has been the most commonly used polymer for making bioresorbable vascular scaffolds (BVS). Despite owning remarkable properties, BVS made from PLLA are facing higher rates of early thrombosis compared with permanent metallic scaffolds. To solve this issue, we modified the PLLA film surface with heparin-mimetic polysaccharide multilayers consisting of sulfated Chinese yam polysaccharide (SCYP) and chitosan (CS) through layer-by-layer (LBL) assembly. The surface chemical compositions, morphologies and growth manner of SCYP/CS multilayers were investigated using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and UV-vis spectroscopy. The relevant hemocompatibility results showed that multilayer-modified PLLA could effectively resist protein adsorption, suppress the platelet adhesion, prolong clotting time, prevent contact and complement activation as well as reduce hemolysis rate. Moreover, the multilayer-modified PLLA exhibited non-cytotoxicity, good antibacterial ability against E. coli and S. aureus, and drug loading/sustained releasing behavior. Overall, the multifunctional PLLA film with integrated properties of hemocompatibility, non-cytotoxicity, antibacterial and drug loading/releasing behavior could be successfully achieved by deposition of SCYP/CS multilayers, which will have potential application in blood-contacting biomedical materials.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Polissacarídeos/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Dioscorea/metabolismo , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Camundongos , Poliésteres/química , Coelhos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
3.
Carbohydr Polym ; 178: 228-237, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050589

RESUMO

A fluorine-free superhydrophobic paper was prepared by a facile method involving layer-by-layer deposition of cationic starch and sodium alginate together with subsequent modification of trichloromethylsilane has been reported in this article. The surface chemical compositions, potentials and surface morphologies of the modified papers were characterized, respectively. The wetting abilities and physical strength properties of the modified papers were investigated. After 4-time deposition of cationic starch/sodium alginate bilayer followed by trichloromethylsilane treatment, the water contact angle of modified paper reached up to 161.7°, and the tensile strength increased by 6.8% in comparison to that of pristine paper. This as-prepared superhydrophobic paper not only showed low bacterial adhesion property, self-cleaning behavior, water repellency, as well as high durability against deformation, chemical and time, but also kept a high strength property under high relative humidity condition, which might has a great application potential in the liquid paper packaging industry.

4.
Polymers (Basel) ; 10(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-30966052

RESUMO

Positively-charged ε-poly(l-lysine) (ε-PL) and negatively-charged carboxymethyl cellulose (CMC) were alternately deposited on a cellulose paper surface by the layer-by-layer (LBL) assembly technique. The formation of ε-PL/CMC multilayers was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), and zeta potential measurement. The morphologies of the multilayer-modified cellulose paper were observed by scanning electron microscopy (SEM). The ε-PL/CMC multilayers effectively improved not only the antibacterial activity of cellulose paper against both Escherichia coli and Staphylococcus aureus, but also the cellulose paper tensile strength property. Cellulose paper modified with a (ε-PL/CMC)4.5 multilayer exhibited the strongest antibacterial activity, selected for preserving cooked beef for nine days at ambient temperature, could extend the shelf-life of beef for about three days compared with common commercial PE films. The prepared antibacterial paper did not show any evidence of the cytotoxic effect since it could not increase the cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with the antibacterial paper, suggesting the possibility of utilization in food packaging field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA