Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 133: 112080, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38613882

RESUMO

Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.


Assuntos
Apoptose , Infarto do Miocárdio , NF-kappa B , Ratos Sprague-Dawley , Receptores de AMPA , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Ratos , Miocárdio/patologia , Miocárdio/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Humanos
2.
Tissue Eng Regen Med ; 21(4): 625-639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578425

RESUMO

BACKGROUND: Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS: In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS: The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION: Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Neurais , Ratos Sprague-Dawley , Siringomielia , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Siringomielia/terapia , Ratos , Proliferação de Células , Epêndima , Masculino , Microglia/metabolismo , Modelos Animais de Doenças
3.
Eur J Pharmacol ; 963: 176263, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081351

RESUMO

Virtually all forms of cardiac disease exhibit cardiac fibrosis as a common trait, which ultimately leads to adverse ventricular remodeling and heart failure. To improve the prognosis of heart disease, it is crucial to halt the progression of cardiac fibrosis. Protein function is intricately linked with protein glycosylation, a vital post-translational modification. As a fundamental member of the ß1,4-galactosyltransferase gene family (B4GALT), ß1,4-galactosyltransferase V (B4GALT5) is associated with various disorders. In this study, significant levels of B4GALT5 expression were observed in cardiac fibrosis induced by transverse aortic constriction (TAC) or TGFß1 and the activation of cardiac fibroblasts (CFs). Subsequently, by administering AAV9-shB4GALT5 injections to TAC animals, we were able to demonstrate that in vivo B4GALT5 knockdown decreased the transformation of CFs into myofibroblasts (myoFBs) and reduced the deposition of cardiac collagen fibers. In vitro tests revealed the same results. Conversely, both in vivo and in vitro experiments indicated that overexpression of B4GALT5 stimulates CFs activation and exacerbates cardiac fibrosis. Initially, we elucidated the primary mechanism by which B4GALT5 regulates the Akt/GSK-3ß/ß-catenin pathway and directly interacts with laminin, thereby affecting cardiac fibrosis. Our findings demonstrate that B4GALT5 promotes cardiac fibrosis through the Akt/GSK-3ß/ß-catenin pathway and reveal laminin as the target protein of B4GALT5.


Assuntos
Cardiomiopatias , Galactosiltransferases , Lumicana , Proteínas Proto-Oncogênicas c-akt , Animais , beta Catenina/genética , beta Catenina/metabolismo , Regulação para Baixo , Fibrose , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Laminina/metabolismo , Lumicana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Camundongos
4.
Int Immunopharmacol ; 127: 111382, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141412

RESUMO

BACKGROUND: Sepsis is a condition that triggers the release of large amounts of reactive oxygen species and inflammatory factors in the body, leading to myocardial injury and cardiovascular dysfunction - an important contributor to the high mortality rate associated with sepsis. Although it has been demonstrated that the sigma-1 receptor (S1R) is essential for preventing oxidative stress, its effectiveness in treating sepsis is yet unknown. AIM: This study aimed to investigate the role and mechanisms of S1R activation in sepsis-induced myocardial injury. METHODS: A model of sepsis-induced myocardial injury was constructed by performing cecum ligation and puncture(CLP) surgery on rats. Flv or BD1047 were intraperitoneally injected into rats for one consecutive week before performing CLP, and then intraperitoneally injected into the rats again 1 h after the surgery.The effects of Flv and BD1047 were detected by HE staining, immunofluorescence staining, IHC staining, echocardiography measurements,TUNEL, oxidative stress detection, TEM, flow cytometry and western blot. We further validated the mechanism in vitro using neonatal rat cardiomyocites and H9C2 cells. RESULTS: S1R protein level was reduced in the hearts of septic rats, whereas administration of Flv, an S1R activator, ameliorated myocardial injury, mitochondrial oxidative stress, and pathological manifestations of sepsis. On the other hand, administration of the S1R inhibitor BD1047 exacerbated the mitochondrial oxidative stress, and apoptosis, as well as symptoms and pathological manifestations of sepsis. In addition, we found that up-regulation of S1R activated the Nrf2/HO1 signaling pathway and promoted nuclear translocation of Nrf2, which activated downstream proteins to generate antioxidant factors, such as HO1, in turn alleviating oxidative stress and countering myocardial damage. CONCLUSION: By scavenging ROS accumulation and reducing mitochondrial oxidative stress via the Nrf2/HO1 signaling pathway, activation of S1R improves cardiac function, mitigates death of cardiomyocytes, and attenuates sepsis-induced myocardial injury.


Assuntos
Etilenodiaminas , Traumatismos Cardíacos , Sepse , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Receptor Sigma-1 , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
5.
Free Radic Biol Med ; 208: 807-819, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774803

RESUMO

Excessive oxidative stress will cause significant injury to osteoblasts, serving as one major pathological mechanism of osteoporosis. Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein and is expressed in the bone. We here explored its potential activity against hydrogen peroxide (H2O2)-induced oxidative injury in cultured osteoblasts. In primary murine and human osteoblasts, NLGN3 stimulation dose-dependently induced Akt, Erk1/2 and S6K activation. NLGN3 pretreatment ameliorated H2O2-induced cytotoxicity and death in osteoblasts. Moreover, H2O2-induced reactive oxygen species (ROS) production and oxidative injury were alleviated with NLGN3 pretreatment in cultured osteoblasts. Further studies showed that NLGN3 activated Nrf2 signaling cascade and induced Nrf2 protein Serine-40 phosphorylation, Keap1-Nrf2 dissociation, Nrf2 protein stabilization and nuclear translocation in osteoblasts. NLGN3 also increased antioxidant response element (ARE) activity and induced expression of Nrf2-ARE-dependent genes (HO1, GCLC and NQO1) in osteoblasts. Moreover NLGN3 mitigated osteoblast oxidative injury by dexamethasone or sodium fluoride (NaF). Nrf2 cascade activation is essential for NLGN3-induced cytoprotective activity in osteoblasts. Nrf2 shRNA or knockout (KO) abolished NLGN3-induced osteoblast cytoprotection against H2O2. Contrarily forced Nrf2 cascade activation by Keap1 KO mimicked NLGN3-induced anti-oxidative activity in murine osteoblasts. Importantly, NLGN3-induced Serine-40 phosphorylation and Nrf2 cascade activation were blocked by an Akt inhibitor MK-2206 or by Akt1 shRNA. Importantly, Akt inhibition, Akt1 silencing or Nrf2 S40T mutation largely inhibited NLGN3-induced osteoblast cytoprotection against H2O2. At last, we showed that NLGN3 mRNA and protein expression was significantly downregulated in necrotic bone tissues of dexamethasone-taken patients. Taken together, NLGN3 activated Akt-dependent Nrf2 cascade to protect osteoblasts from oxidative stress.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Apoptose , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Dexametasona/farmacologia , RNA Interferente Pequeno/metabolismo , Osteoblastos/metabolismo , Serina/metabolismo
6.
Cell Mol Biol Lett ; 28(1): 71, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658291

RESUMO

Mechanical pressure overload and other stimuli often contribute to heart hypertrophy, a significant factor in the induction of heart failure. The UDP-glucose ceramide glycosyltransferase (UGCG) enzyme plays a crucial role in the metabolism of sphingolipids through the production of glucosylceramide. However, its role in heart hypertrophy remains unknown. In this study, UGCG was induced in response to pressure overload in vivo and phenylephrine stimulation in vitro. Additionally, UGCG downregulation ameliorated cardiomyocyte hypertrophy, improved cardiomyocyte mitochondrial oxidative stress, and reduced the ERK signaling pathway. Conversely, UGCG overexpression in cardiomyocytes promoted heart hypertrophy development, aggravated mitochondrial oxidative stress, and stimulated ERK signaling. Furthermore, the interaction between beta-1,4-galactosyltransferase 5 (B4GalT5), which catalyses the synthesis of lactosylceramide, and UGCG was identified, which also functions as a synergistic molecule of UGCG. Notably, limiting the expression of B4GalT5 impaired the capacity of UGCG to promote myocardial hypertrophy, suggesting that B4GalT5 acts as an intermediary for UGCG. Overall, this study highlights the potential of UGCG as a modulator of heart hypertrophy, rendering it a potential target for combating heart hypertrophy.


Assuntos
Ceramidas , Glicosiltransferases , Humanos , Transdução de Sinais , Cardiomegalia , Estresse Oxidativo
7.
Gels ; 9(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37623107

RESUMO

Western blotting is one of the most extensively used techniques in the biomedical field. However, it is criticized by many researchers due to its considerable time consumption, multiple steps, and low method results. Therefore, we modified the steps of gel preparation, electrophoresis, electrotransfer, blocking, and gel cutting. First, we simplified the gel preparation step by premixing various reagents and varying the amounts of catalysts or radical generators, which shortened the entire process to 10 min. Second, we shortened the electrophoresis process to 35 min by modifying the formula of the electrophoresis running buffer. Then, we removed the hazard of methanol vapor by replacing methanol with ethanol in the electrotransfer buffer. Finally, the use of polyvinylpyrrolidone-40 shortened the blocking procedure to 10 min. Our modifications shortened the time, improved the experimental productivity, and minimized the experimental cost without hindering compatibility with most existing equipment. The entire experiment up to primary antibody incubation can be completed within 80 min.

8.
Int Immunopharmacol ; 122: 110527, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392572

RESUMO

Cardiac remodeling is the final stage of almost all cardiovascular diseases, leading to heart failure and arrhythmias. However, the pathogenesis of cardiac remodeling is not fully understood, and specific treatment schemes are currently unavailable. Curcumol is a bioactive sesquiterpenoid that has anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. This study aimed to investigate the protective effect of curcumol on cardiac remodeling and elucidate its relevant underlying mechanism. Curcumol significantly attenuated cardiac dysfunction, myocardial fibrosis, and hypertrophy in the animal model of isoproterenol (ISO)-induced cardiac remodeling. Curcumol also alleviated cardiac electrical remodeling, thereby reducing the risk of ventricular fibrillation (VF) after heart failure. Inflammation and apoptosis are critical pathological processes involved in cardiac remodeling. Curcumol inhibited the inflammation and apoptosis induced by ISO and TGF-ß1 in mouse myocardium and neonatal rat cardiomyocytes (NRCMs). Furthermore, the protective effects of curcumol were found to be mediated through the inhibition of the protein kinase B (AKT)/nuclear factor-kappa B (NF-κB) pathway. The administration of an AKT agonist reversed the anti-fibrotic, anti-inflammatory, and anti-apoptotic effects of curcumol and restored the inhibition of NF-κB nuclear translocation in TGF-ß1-induced NRCMs. Our study suggests that curcumol is a potential therapeutic agent for the treatment of cardiac remodeling.


Assuntos
Insuficiência Cardíaca , Sesquiterpenos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais , Remodelação Ventricular , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Miócitos Cardíacos/metabolismo , Fibrose , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Insuficiência Cardíaca/tratamento farmacológico
9.
Int Immunopharmacol ; 120: 110370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37235964

RESUMO

Fucoxanthin, a type of natural xanthophyll carotenoid, is mainly present in seaweeds and various microalgae. This compound has been proved to possess multiple functions including antioxidation, anti-inflammation and anti-tumor. Atherosclerosis is widely deemed as a chronic inflammation disease, and as the basis of vascular obstructive disease. However, there is rare research about fucoxanthin's effects on atherosclerosis. In this study, we demonstrated that the plaque area of mice treated with fucoxanthin was significantly reduced compared to the group that did not receive fucoxanthin. In addition, Bioinformatics analysis showed that PI3K/AKT signaling might be involved in the protective effect of fucoxanthin, and this hypothesis was then verified in vitro endothelial cell experiments. Besides, our further results showed that endothelial cell mortality measured by TUNEL and flow cytometry was significantly increased in the oxidized low-density lipoprotein (ox-LDL) treatment group while significantly decreased in the fucoxanthin treatment group. In addition, the pyroptosis protein expression level in the fucoxanthin group was significantly lower than that in the ox-LDL group, which indicated that fucoxanthin improved the pyroptosis level of endothelial cells. Furthermore, it was revealed that TLR4/NFκB signaling were also participated in the protection of fucoxanthin on endothelial pyroptosis. Moreover, the protection of fucoxanthin on endothelial cell pyroptosis was abrogated when PI3K/AKT was inhibited or TLR4 was overexpressed, which further suggested the anti-pyroptosis effect of fucoxanthin was mediated through regulations of PI3K/AKT and TLR4/NFκB signaling.


Assuntos
Aterosclerose , Células Endoteliais , Animais , Camundongos , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Aterosclerose/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Lipoproteínas LDL/metabolismo , Apoptose
10.
Exp Neurol ; 365: 114430, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121428

RESUMO

Ependymal cilia, which are maintained by the Connexin 43 (Cx43) and protected by the actin network, play an essential role in regulating cerebrospinal fluid (CSF) circulation. The decline of ependymal cilia has been reported in syringomyelia, but the underlying mechanism remains unclear. In this study, we used an extradural compression-induced syringomyelia rat model to investigate the changes in cilia and related pathologies during the formation of syringomyelia. We divided rats into control and syringomyelia groups and sacrificed them at three time points, 7, 14, and 28 days postoperative (dpo). Scanning electron microscopy (SEM) and immunofluorescence (IF) were used to illustrate the number and morphology of ependymal cilia. IF was also used to show the status of centrioles, actin network, and Cx43 (the main component of the gap junction). Transmission electron microscopy (TEM) was used to observe the structure of the gap junction. The results showed that most syringomyelia were located at segments (T10-12) rostral to the compression site (T13). SEM images showed that the number of cilia in the central canal (CC) declined in two phases during the development of syringomyelia (early stage, 7 dpo; later stage, 14 and 28 dpo). The number of cilia showed a significant difference between the early and later stages of syringomyelia development. Additionally, TEM showed the absence of gap junction and IF illustrated less Cx43 expression in ependymal cells (ECs) at the compression site in both the early and later stages. Actin network disruption and centrioles reduction at adjacent segments rostral to the compression site were found in the later stage. These findings indicate that the loss of Cx43 at the compression site may be related to cilia detachment at rostral adjacent segments by disrupting intercellular communication in the early stage of syringomyelia development. This early cilia decline then causes actin network disorganization, further aggravating cilia decline by exposing centrioles to CSF shear stress in the later stage. These findings suggest a potential mechanism of ependymal cilia decline in the development of syringomyelia and may provide a novel perspective for future research in this area.


Assuntos
Siringomielia , Animais , Ratos , Actinas/metabolismo , Cílios/metabolismo , Cílios/patologia , Conexina 43 , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Siringomielia/metabolismo , Siringomielia/patologia
11.
Neurospine ; 20(4): 1346-1357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38171302

RESUMO

OBJECTIVE: Syringomyelia is a common central nervous system disease characterized by the dilation of the central canal (CC). Regarding the pathogenesis of syringomyelia, cerebrospinal fluid (CSF) circulation obstruction in the subarachnoid space (SAS) of the spinal cord has been widely accepted. However, clinical and animal studies on obstructing the CSF in SAS failed to form syringomyelia, challenging the theory of SAS obstruction. The precise pathogenesis remains unknown. METHODS: We utilized an extradural compression rat model to investigate the pathogenesis underlying syringomyelia. Magnetic resonance imaging enabled detection of syringomyelia formation. To assess CSF flow within the SAS, Evans blue was infused into the cisterna magna. Histological analysis allowed morphological examination of the CC. Furthermore, CSF flow through the CC was traced using Ovalbumin Alexa-Flour 647 conjugate (OAF-647). Scanning electron microscopy (SEM) enabled visualization of ependymal cilia. RESULTS: The findings showed that the dura mater below the compression segment exhibited lighter coloration relative to the region above the compression, indicative of partial obstruction within the SAS. However, the degree of SAS occlusion did not significantly differ between syringomyelia (SM-Y group) and those without (SM-N group). Intriguingly, hematoxylin and eosin staining and CSF tracing revealed occlusion of the CC accompanied by reduced CSF flow in the SM-Y group compared to SM-N and control groups. SEM images uncovered impairment of ependymal cilia inside the syringomyelia. CONCLUSION: CC occlusion may represent a physiological prerequisite for syringomyelia formation, while SAS obstruction serves to initiate disease onset. The impairment of ependymal cilia appears to facilitate progression of syringomyelia.

12.
Biochem Biophys Res Commun ; 636(Pt 2): 104-112, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368152

RESUMO

Sepsis accompanied by myocardial injury is an important cause of multiple organ dysfunction, and its underlying molecular mechanism is not fully clear. Although diverse effects of fibroblast growth factor (FGF) in heart have been discovered till now, the specific role of FGF5 in heart remains unclear. Therefore, our study aims to explore the possible impacts of FGF5 on sepsis-induced cardiac injury. Sepsis-induced cardiac injury was established through administration of lipopolysaccharide (LPS). The expression level of FGF5 in sepsis heart was decreased, and injection of FGF5-overexpressing adenovirus attenuated cardiac injury reflected by echocardiographic and pathological findings. Besides, FGF5 overexpression, not only in vivo heart but also in vitro cardiomyocytes, reduced the levels of oxidative stress and pyroptosis resulted from LPS. In addition, overexpression of FGF5 reduced LPS-activated the levels of phosphorylated CaMKII (p-CaMKII), p-NFκB, NLRP3, caspase-1, IL-1ß and IL-18. Furthermore, KN93, the inhibitor of CaMKII, exerted the similarly protective effects on LPS-induced pyroptosis. In summary, our study implied the beneficial effects of FGF5 on LPS-induced cardiac injury, which was at least partially attributed to the inhibition of CaMKII-mediated pyroptotic signaling.


Assuntos
Piroptose , Sepse , Humanos , Miócitos Cardíacos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Sepse/metabolismo , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/farmacologia
13.
Biochem Biophys Res Commun ; 634: 152-158, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36244113

RESUMO

Acute lung injury (ALI), with high morbidity and mortality, is mainly resulted by infectious or non-infectious inflammatory stimulators, and it will further evolve into acute respiratory distress syndrome if not controlled. Fibroblast growth factors (FGFs) consist of more than 23 kinds of members, which are involved in various pathophysiological processes of body. However, the effect of FGF5, one member of FGFs, is still not certain in lipopolysaccharide (LPS)-induced ALI. In this study, we explored the possible impacts of FGF5 in LPS-induced ALI and primarily focused on endothelial cell, which was one of the most vulnerable cells in septic ALI. In the mouse group of FGF5 overexpression, LPS-induced lung injuries were mitigated, as well as the pyroptosis levels of pulmonary vascular endothelial cells. Additionally, in vitro human umbilical vein endothelial cells (HUVECs), our results showed that the level of cell pyroptosis was ameliorated with FGF5 overexpression, and AKT signal was activated with the overexpression of FGF5, whereas after administration of MK2206, an inhibitor of AKT signal, the protection of FGF5 was inhibited. Therefore, these results suggested that FGF5 exerted protective effects in endothelial cells exposed to LPS, and this protection of FGF5 could be attributed to activated AKT signal.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Humanos , Animais , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais , Pulmão/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 5 de Crescimento de Fibroblastos/farmacologia
14.
Mol Biol Rep ; 49(7): 6459-6466, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581507

RESUMO

Lumbar facet osteoarthritis (FJOA) is a major cause of severe lower back pain and disability worldwide. However, the mechanism underlying cartilage degeneration in FJOA remains unclear. The purpose of this study was to investigate the regulation and mechanism of P2Y12 on chondrocyte apoptosis in FJOA. The experimental rats were randomly divided into non-operation (n = 20) and operation groups (n = 20). In the operation group, Sodium iodoacetate (MIA, Sigma, 200 mg/mL) was injected into the right L4/5 facet process using a blunt nanoneedle 26 (WPI, Sarasota, FL, USA) under the control of an injection pump. The final injection volume was 5µL and the injection rate was 2µL/min. The facet joint was removed four weeks after surgery. After the operation, samples were stored at -80 °C until further use, whereby the right facet joints in each group were tested. Hematoxylin and eosin (HE) and iron-red solid green staining were used to observe the degeneration of articular chondrocytes in rats. Immunohistochemistry and western blotting were used to observe the expressions of P2Y12, Matrix metalloproteinase 13 (MMP13), Collagen II (COL2), and other cartilage degeneration and apoptosis-related genes. Co-localization of P2Y12-cleaved caspase-3 in the apoptosis model was detected by dual-standard immunofluorescence staining. Apoptosis was also detected by flow cytometry and TUNEL assay.P2Y12 is highly expressed in OA cartilage tissue, and inhibits IL-1ß -induced chondrocyte apoptosis through PI3K/AKT signaling pathway, thus playing a certain protective role on cartilage.


Assuntos
Condrócitos , Osteoartrite da Coluna Vertebral , Receptores Purinérgicos P2Y12/metabolismo , Animais , Apoptose , Condrócitos/metabolismo , Osteoartrite da Coluna Vertebral/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
15.
Front Bioeng Biotechnol ; 10: 861788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547163

RESUMO

Background: Irreducible knee dislocation (IKD) is a very rare but serious type of knee dislocation; it can lead to soft tissue necrosis due to incarceration of the medial structures and faces great difficulty in the postoperative rehabilitation, too. IKD needs careful pre-operative planning. There is no universal agreement about the appropriate surgical strategy for IKD. The purpose of this study was to investigate the clinical efficacy, safety, and outcome of the two-staged operation in treatment of IKD. Methods: IKD patients were included from June 1, 2016 to May 31, 2020. In the stage-1 surgery, acute reduction and extra-articular structure repair were performed. Following an intermediate rehabilitation, delayed cruciate ligament reconstructions were performed in stage-2. Physical examination, CT, MRI, and X-ray were performed during the pre-operative period. Knee function, joint stability, ligament laxity, knee range of motion (ROM), and alignment were accessed at follow-ups. The minimum and maximum follow-up times were 0.5 years and 1 year, respectively. Results: In total, 17 IKD patients were included. There were three subjects (17.65%) missing at the 1 year follow-up and the average follow-up was 11.18 ± 2.53 months. After stage-1, normal alignment and superior valgus/varus stability were restored in most subjects; however, a notable anterior-posterior instability still existed in most patients. The intermediate rehabilitation processed smoothly (6.94 ± 1.20 weeks), and all patients achieved knee ROM of 0-120° finally. At 0.5 years and 1 year follow-up after stage-2, all subjects had achieved normal knee stability, ROM, and satisfying joint function. No infection or DVT was observed. Conclusions: The two-staged operation for IKD has superior efficacy on knee stability and function, and it can facilitate the rehabilitation and achieve satisfactory short-term outcome.

16.
Folia Neuropathol ; 60(1): 128-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359153

RESUMO

Peripheral primitive neuroectodermal tumours (PNETs) are rare and highly malignant tumours in the spine, with a predilection for young adults. There are no standard guidelines for treating these tumours. Surgical resection combined with postoperative radiotherapy and chemotherapy is a common and effective treatment at present. Even so, survival time of patients with these tumours is still very short. In this study, we present three rare cases of thoracic epidural PNETs and review the literature.


Assuntos
Tumores Neuroectodérmicos Primitivos Periféricos , Tumores Neuroectodérmicos Primitivos , Humanos , Tumores Neuroectodérmicos Primitivos/patologia , Tumores Neuroectodérmicos Primitivos/cirurgia , Tumores Neuroectodérmicos Primitivos Periféricos/patologia , Tumores Neuroectodérmicos Primitivos Periféricos/terapia , Resultado do Tratamento , Adulto Jovem
17.
Int J Gen Med ; 15: 1733-1742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221713

RESUMO

OBJECTIVE: In-stent restenosis (ISR) is regarded as a critical limiting factor in stenting for coronary heart disease (CHD). Recent research has shown that fasting residual cholesterol (RC) has been shown to have a substantial impact on coronary heart disease. Unfortunately, there have not been much data to bear out the relationship between RC and ISR. Then, the predictive value of RC for in-stent restenosis in patients with coronary heart disease was analyzed. PATIENTS AND METHODS: Aiming to explore the relationship between RC and ISR, we designed a retrospective study of patients with CHD after drug-eluting stent (DES) implantation, combining the data from a public database and selecting the best-fitting model by comparing the optical subset with least absolute shrinkage and selection operator (LASSO) regression. RESULTS: Analysis of the abovementioned two models showed that the optical subset optimal subset model, which was based on RC, creatine, history of diabetes, smoking, multi-vessel lesions (2 vessels or more lesions), peripheral vascular lesions (PAD), and blood uric acid, had a better fit (AUC = 0.68), and that RC was an independent risk factor for ISR in the abovementioned two models. Notwithstanding its limitation, this study does suggest that RC has good predictive value for ISR. CONCLUSION: Remnant cholesterol is an independent risk factor for in-stent restenosis after percutaneous coronary intervention (PCI) and is a reliable predictor of ISR.

18.
Exp Ther Med ; 23(2): 148, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35069829

RESUMO

Fibroblast-like synoviocytes (FLSs) have functions in the pathogenesis of rheumatoid arthritis (RA) through the onset of synovitis, the growth of pannus and the destruction of cartilage and bone. The significant increase in the proliferation, migration and invasion of FLSs induces the onset and advancement of RA. To date, the exact function of corepressor element-1 silencing transcription factor (CoREST) in RA remains unclear, but its expression has been determined in RA synovial tissues. In this study, the effects of CoREST were investigated in a TNF-α-induced FLS activation model. Following the silencing of CoREST expression with small interfering (si)RNA, the viability and migration of FLSs were evaluated. Furthermore, the possible molecular mechanisms were explored by detecting the expression of key factors, including matrix metalloproteinases (MMPs), lysine-specific histone demethylase 1 (LSD1) and associated cytokines, via reverse transcription-quantitative PCR and western blotting. CoREST expression increased not only in the RA synovial tissues, but also in the TNF-α-induced FLS activation model. Following the silencing of CoREST in the FLSs treated with TNF-α, cell viability was inhibited, and the migratory capacity of FLSs was suppressed, which was accompanied by the reduced expression of MMP-3 and MMP-9. The expression of LSD1 was also downregulated. There was a notable decrease in the synthesis of interferon-γ and interleukin (IL)-17, while IL-10 expression was increased. The knockdown of CoREST inhibited the viability and migration of FLSs stimulated with TNF-α. Thus, the suppression of CoREST may have crucial roles in the occurrence and development of RA.

19.
Chin Med J (Engl) ; 135(23): 2859-2868, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36728504

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory syndrome induced by several infectious agents. Multiple organs are affected by sepsis, including the liver, which plays an important role in metabolism and immune homeostasis. Fibroblast growth factors (FGFs) participate in several biological processes, although the role of FGF5 in sepsis is unclear. METHODS: In this study, lipopolysaccharide (LPS) was administrated to mice to establish a sepsis-induced liver injury. A similar in vitro study was conducted using L-02 hepatocytes. Western blot and immunohistochemistry staining were performed to evaluate the FGF5 expression level in liver tissues and cells. Inflammatory cell infiltrations, cleaved-caspase-3 expressions, reactive oxygen species and levels of inflammatory cytokines were detected by immunofluorescence, dihydroethidium staining, and reverse transcription quantitative polymerase chain reaction analysis, respectively. Flow cytometry was used to detect the apoptosis level of cells. In addition, ribonucleic acid (RNA)-sequencing was applied to explore the possible mechanism by which FGF5 exerted effects. RESULTS: LPS administration caused FGF5 down-regulation in the mouse liver as well as in L-02 hepatocytes. Additionally, with FGF5 overexpression, liver injury and the level of hepatocyte apoptosis were ameliorated. Further, RNA sequencing performed in hepatocytes revealed the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) pathway as a possible pathway regulated by FGF5 . This was supported using an inhibitor of the PI3K/AKT pathway, which abrogated the protective effect of FGF5 in LPS-induced hepatocyte injury. CONCLUSION: The anti-apoptotic effect of FGF5 on hepatocytes suffering from LPS has been demonstrated and was dependent on the activation of the PI3K/AKT signaling pathway.


Assuntos
Apoptose , Fator 5 de Crescimento de Fibroblastos , Hepatócitos , Sepse , Animais , Camundongos , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/farmacologia , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo
20.
Exp Ther Med ; 22(5): 1269, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34594406

RESUMO

Selenium (Se) is considered to have antioxidant properties, which are beneficial for heart condition. Hyperhomocysteinemia (HHCY) has been suggested to potentially lead to heart failure and is characterized by cardiac fibrosis; however, investigation on the role of Se and HHCY in cardiac fibrosis is rare. Since previous studies demonstrated the important role of the long non-coding RNA maternally expressed 3 (MEG3) in some heart diseases, the present study aimed to determine how Se and MEG3 might exert regulatory effects on HCY-induced fibrosis in cardiac fibroblasts (CFs). Mouse CFs were isolated and treated with HCY and Se. The expression of α-smooth muscle actin (α-SMA), collagen I and III was detected by western blotting to reflect CF fibrosis. Reverse transcription-quantitative PCR was performed to determine the expression levels of MEG3. Inflammation and oxidative stress responses were analyzed by measuring TNF-α, IL-1ß (ELISA) and reactive oxygen species levels (using a commercial kit), respectively. Cell Counting Kit-8 was used to evaluate CF proliferation. Total and phosphorylated (p) expression of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was evaluated by western blotting. CFs were transfected with adenovirus expressing MEG3 short-hairpin RNA to knock down MEG3 expression. Se treatment downregulated the expression level of MEG3 in HCY-stimulated CFs, whilst inhibiting the inflammatory and oxidative stress response. Furthermore, Se inhibited the increased proliferation of CFs following HCY treatment. In addition, MEG3-knockdown in CFs could improve fibrosis caused by HCY. Furthermore, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 were decreased following treatment with Se or MEG3 silencing. Taken together, the findings from the present study suggested that Se may alleviate cardiac fibrosis by downregulating the expression of MEG3 and reducing the inflammatory and oxidative stress response in CFs. This suggests that Se may be a potential therapeutic option for treating cardiac fibrosis in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...