Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202447

RESUMO

Nitrogen is a fundamental component for building amino acids and proteins, playing a crucial role in the growth and development of plants. Leaf nitrogen concentration (LNC) serves as a key indicator for assessing plant growth and development. Monitoring LNC provides insights into the absorption and utilization of nitrogen from the soil, offering valuable information for rational nutrient management. This, in turn, contributes to optimizing nutrient supply, enhancing crop yields, and minimizing adverse environmental impacts. Efficient and non-destructive estimation of crop LNC is of paramount importance for on-field crop management. Spectral technology, with its advantages of repeatability and high-throughput observations, provides a feasible method for obtaining LNC data. This study explores the responsiveness of spectral parameters to soybean LNC at different vertical scales, aiming to refine nitrogen management in soybeans. This research collected hyperspectral reflectance data and LNC data from different leaf layers of soybeans. Three types of spectral parameters, nitrogen-sensitive empirical spectral indices, randomly combined dual-band spectral indices, and "three-edge" parameters, were calculated. Four optimal spectral index selection strategies were constructed based on the correlation coefficients between the spectral parameters and LNC for each leaf layer. These strategies included empirical spectral index combinations (Combination 1), randomly combined dual-band spectral index combinations (Combination 2), "three-edge" parameter combinations (Combination 3), and a mixed combination (Combination 4). Subsequently, these four combinations were used as input variables to build LNC estimation models for soybeans at different vertical scales using partial least squares regression (PLSR), random forest (RF), and a backpropagation neural network (BPNN). The results demonstrated that the correlation coefficients between the LNC and spectral parameters reached the highest values in the upper soybean leaves, with most parameters showing significant correlations with the LNC (p < 0.05). Notably, the reciprocal difference index (VI6) exhibited the highest correlation with the upper-layer LNC at 0.732, with a wavelength combination of 841 nm and 842 nm. In constructing the LNC estimation models for soybeans at different leaf layers, the accuracy of the models gradually improved with the increasing height of the soybean plants. The upper layer exhibited the best estimation performance, with a validation set coefficient of determination (R2) that was higher by 9.9% to 16.0% compared to other layers. RF demonstrated the highest accuracy in estimating the upper-layer LNC, with a validation set R2 higher by 6.2% to 8.8% compared to other models. The RMSE was lower by 2.1% to 7.0%, and the MRE was lower by 4.7% to 5.6% compared to other models. Among different input combinations, Combination 4 achieved the highest accuracy, with a validation set R2 higher by 2.3% to 13.7%. In conclusion, by employing Combination 4 as the input, the RF model achieved the optimal estimation results for the upper-layer LNC, with a validation set R2 of 0.856, RMSE of 0.551, and MRE of 10.405%. The findings of this study provide technical support for remote sensing monitoring of soybean LNCs at different spatial scales.

2.
Acta Pharmacol Sin ; 45(3): 490-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935896

RESUMO

Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17ß-estradiol, and both compounds do activate estrogen receptors Erα and Erß with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erß to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.


Assuntos
Estrenos , Receptor alfa de Estrogênio , Bainha de Mielina , Pirrolidinonas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Colesterol/metabolismo
3.
Math Biosci Eng ; 20(3): 4592-4608, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36896514

RESUMO

In recent years, China vigorously develops energy conservation and emission reduction, in order to actively respond to the national call to make the aircraft operation process reduce unnecessary costs and strengthen the safety of the aircraft taxiing process. This paper studies the spatio-temporal network model and dynamic planning algorithm to plan the aircraft taxiing path. First, the relationship between the force, thrust and engine fuel consumption rate during aircraft taxiing is analyzed to determine the fuel consumption rate during aircraft taxiing. Then, a two-dimensional directed graph of airport network nodes is constructed. The state of the aircraft is recorded when considering the dynamic characteristics of the node sections, the taxiing path is determined for the aircraft using dijkstra's algorithm, and the overall taxiing path is discretized from node to node using dynamic planning to design a mathematical model with the shortest taxiing distance as the goal. At the same time, the optimal taxiing path is planned for the aircraft in the process of avoiding aircraft conflicts. Thus, a state-attribute-space-time field taxiing path network is established. Through example simulations, simulation data are finally obtained to plan conflict-free paths for six aircraft, the total fuel consumption for the six aircraft planning is 564.29 kg, and the total taxiing time is 1765s. This completed the validation of the dynamic planning algorithm of the spatio-temporal network model.

4.
Eur J Pharm Sci ; 184: 106408, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36842513

RESUMO

Calcium-activated chloride channels (CaCCs) are chloride channels that are regulated according to intracellular calcium ion concentrations. The channel protein ANO1 is widely present in cells and is involved in physiological activities including cellular secretion, signaling, cell proliferation and vasoconstriction and diastole. In this study, the ANO1 inhibitors were investigated with machine learning and molecular simulation. Two-dimensional structure-activity relationship (2D-SAR) and three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for the qualitative and quantitative prediction of ANO1 inhibitors. The results showed that the prediction accuracies of the model were 85.9% and 87.8% for the training and test sets, respectively, and 85.9% and 87.8% for the rotating forest (RF) in the 2D-SAR model. The CoMFA and CoMSIA methods were then used for 3D QSAR modeling of ANO1 inhibitors, respectively. The q2 coefficients for model cross-validation were all greater than 0.5, implying that we were able to obtain a stable model for drug activity prediction. Molecular docking was further used to simulate the interactions between the five most promising compounds predicted by the model and the ANO1 protein. The total score for the docking results between all five compounds and the target protein was greater than 6, indicating that they interacted strongly in the form of hydrogen bonds. Finally, simulations of amino acid mutations around the docking cavity of the target proteins showed that each molecule had two or more sites of reduced affinity following a single mutation, indicating outstanding specificity of the screened drug molecules and their protein ligands.


Assuntos
Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Simulação de Acoplamento Molecular , Anoctamina-1/antagonistas & inibidores
5.
Sci Total Environ ; 856(Pt 1): 158810, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162572

RESUMO

The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Nanotubos de Carbono , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Cátions
6.
Artigo em Inglês | MEDLINE | ID: mdl-36078273

RESUMO

This study explores the incidence and trend of zoonoses in China and its relationship with environmental health and proposes suggestions for promoting the long-term sustainable development of human, animal, and environmental systems. The incidence of malaria was selected as the dependent variable, and the consumption of agricultural diesel oil and pesticides and investment in lavatory sanitation improvement in rural areas were selected as independent variables according to the characteristics of nonpoint source pollution and domestic pollution in China's rural areas. By employing a fixed effects regression model, the results indicated that the use of pesticides was negatively associated with the incidence of malaria, continuous investment in rural toilet improvement, and an increase in economic income can play a positive role in the prevention and control of malaria incidence. Guided by the theory of One Health, this study verifies human, animal, and environmental health as a combination of mutual restriction and influence, discusses the complex causal relationship among the three, and provides evidence for sustainable development and integrated governance.


Assuntos
Poluição Ambiental , Praguicidas , Agricultura , Animais , China/epidemiologia , Desenvolvimento Econômico , Humanos , Saneamento
7.
Chemosphere ; 308(Pt 2): 136337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084834

RESUMO

The non-point source pollution induced by phosphorus (P) leaching from fertile soils is accelerating the eutrophication phenomena in aqueous ecosystems. Herein, to alleviate and intercept the P leaching from the fertile soils, diverse P immobilization materials (PIM) which can transform labile P into stable P via a range of physicochemical and biological interactions have been adopted and received increasing research interest. However, the remediation mechanisms of different PIMs were complex and vary with soil properties and PIM application methods. In this review, the P fraction and mobility characteristics of different fertile soils were first introduced. Then, three kinds of PIM including inorganic materials (e.g., clay minerals and red mud), organic materials (e.g., polyacrylamide), and composites (e.g., modified biochar) applied in soil P leaching interception were concluded. The key factors (i.e., soil pH, soil texture, organic matter content and variable soil moisture) influencing PIM performance and potential PIMs used for reducing soil P leaching were also introduced. Current review can favor for proposing more suitable and insightful strategies to regulate the fertile soil P and achieve the dual goals of improving the crop land quality and yield, and preventing agricultural non-point source pollution.


Assuntos
Poluentes do Solo , Solo , Argila , Ecossistema , Minerais , Fósforo/química , Solo/química , Poluentes do Solo/análise
8.
J Environ Manage ; 324: 116340, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170780

RESUMO

Al toxicity and Cd pollution are key limiting factors for agricultural production in the acidic soils in China. The application of amendments is an effective and promising measure for remediating strongly acidic Cd-contaminated soils. However, the information on applying amendments for alleviating Al toxicity and regulating plant Cd accumulation is still rare. Here, oyster shell (OS), red mud (RM), hydroxyapatite (HAP), and biochar (BC) at 30 g kg-1 were investigated for alleviating Al toxicity and decreasing Cd accumulation in spinach plants. The results showed that four amendments significantly increased soil pH, and reduced soil exchangeable Al3+ and DTPA-Cd, promoted spinach growth (P < 0.05). Al(OH)30 and Al-HA were the main forms of active Al in soil. The BC and OS were more effective to alleviate Al toxicity but significantly (P < 0.05) increased Cd accumulation in spinach. RM and HAP effectively reduced the uptake of Cd by spinach plants as well as alleviated Al toxicity (P < 0.05). Bivariate correlation analysis and the partial least squares path modeling analysis indicated that soil exchangeable Al3+ was the main limiting factor for biomass production. Our study demonstrated that HAP could significantly alleviate Al toxicity, promote spinach growth, and decrease Cd accumulation in strongly acidic Cd-contaminated soils. Besides, OS and BC effectively alleviated soil Al toxicity leading to promoting the growth of spinach. Compared with CK, RM treatment significantly reduced soil Cd bioavailability (61.2%) and decreased Cd concentration and uptake of spinach plants by 90.0% and 50.7%. These results indicated that RM could be used as an efficient amendment in Cd contaminated.


Assuntos
Oryza , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Solo , Alumínio/toxicidade , Spinacia oleracea , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal
9.
Glia ; 70(10): 1992-2008, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758525

RESUMO

Myelin sheath, formed by oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells in periphery, plays a critical role in supporting neuronal functions. OLs, differentiated from oligodendrocyte precursor cells (OPCs), are important for myelination during development and myelin repair in CNS demyelinating disease. To identify mechanisms of myelin development and remyelination after myelin damage is of great clinical interest. Here we show that the orphan G protein-coupled receptor GPR149, enriched in OPCs, negatively regulate OPC to OL differentiation, myelination, as well as remyelination. The expression of GPR149 is downregulated during OPCs differentiation into OLs. GPR149 deficiency does not affect the number of OPCs, but promotes OPC to OL differentiation which results in earlier development of myelin. In cuprizone-induced demyelination model, GPR149 deficiency significantly enhances myelin regeneration. Further study indicates that GPR149 may regulate OL differentiation and myelin formation via MAPK/ERK pathway. Our study suggests that deleting or blocking GPR149 might be an intriguing way to promote myelin repair in demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Remielinização/fisiologia
10.
Environ Sci Pollut Res Int ; 29(28): 42372-42383, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35359209

RESUMO

Diverse phosphorus-containing materials (PCMs) were widely applied in remediation of cadmium-contaminated soils, and their effects on the change of soil cadmium availability (SCA) varied with their physicochemical characteristics and environmental conditions. Investigation on the effect of various PCMs on reducing SCA under different conditions favors the safe utilization of Cd-contaminated soil. Herein, a meta-analysis of literature published before August 2021 was carried out. A total of 342 independent observations were obtained from 42 published papers which included 9 factors that may affect the passivation effect of fertilizer content: phosphorus type, phosphorus application rate, soil pH, soil CEC, soil organic matter, experiment type, and time. Results of boosted regression tree analysis showed that the application rate is the most important factor contributing to the SCA, followed by soil pH and duration. Results of this meta-analysis showed that medium P input shows potential for reactivating the SCA. Under alkaline soil conditions and high soil CEC values, PCM input can better deactivate SCA. In addition, the difference from the previous understanding is that under the medium input of phosphorus-containing fertilizer (90-500 mg P∙kg-1), it will significantly increase the content of available cadmium in soil. In addition, future recommendation for exploring novel PCMs and suitable strategies for controlling the SCA though PCM application were also proposed. Our works may promote the interpretation of the interference factors on the SCA changes and fill the research gaps on utilization of PCM in Cd-polluted soil remediation.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Fertilizantes/análise , Fósforo , Solo , Poluentes do Solo/análise
11.
Environ Sci Pollut Res Int ; 29(38): 57421-57436, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349066

RESUMO

Clarifying the time-varying spillovers among pilot carbon emission permit trading markets in China is an important foundation for building the national carbon emission trading market. We calculate the dynamic spillover of carbon price return among the pilot carbon emission permit trading markets in China with the time-varying connectedness approach. The dataset is constructed from transaction data from seven pilot carbon markets in China during the period of June 23, 2014, to December 31, 2020. The quantitative analysis suggests that (i) Beijing and Chongqing carbon emission trading markets are the main spillover markets of carbon price returns, with strong pricing power, while the Guangdong and Tianjin markets are the main receivers of the price return spillover in other pilot carbon emission trading markets. (ii) The spillover effect among China's carbon markets has a strong policy orientation. The improvement and development of the carbon market driven by macroeconomic regulation and control policies can effectively improve the spillover ability of the carbon market, and the market trading activity, namely the volatility of the carbon price return rate, can amplify the spillover ability of the carbon market in the short term. (iii) There exist three types of price return spillover among China's pilot carbon emission trading markets, including central divergence, one-way chain transmission, and circular spillover. Along with the improvement of market operation efficiency, the central divergent type of spillover shifts to the pattern of circular spillover. It is necessary for the government to improve market efficiency and ensure the coordinated development of China's pilot carbon emission trading market and national carbon emission trading market.


Assuntos
Carbono , Eficiência , Pequim , Carbono/análise , China , Custos e Análise de Custo
12.
Environ Pollut ; 294: 118592, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856246

RESUMO

Although biochar supports were widely adopted to fabricate the biochar (BC) supported layered double hydroxides (LDHs) composites (LDH-BC) for efficient environmental remediation, few studies focus on the important role of biochar support in alleviating the stacking of LDHs and enhancing LDH-BC's performance. Through the analysis of the material structure-performance relationship, the "support effect" of fine biochar prepared by ball milling was carefully explored. Compared with the original LDHs on LDH-BC, the LDHs on ball milled biochar (LDH-BMBC) had smaller particle size (from 1123 nm to 586 nm), crystallite size (from 20.5 nm to 6.56 nm), more abundant O-containing functional groups, and larger surface area (370 m2 g-1) and porous structure. The Langmuir model revealed that the maximum theoretical phosphate adsorption capacity of LDH-BMBC (56.2 mg P g-1) was significantly higher than that of LDH-BC (27.6 mg P g-1). The leaching experiment proved that the addition of LDH-BMBC in calcareous soil could significantly reduce the release of soil total phosphate (46.1%) and molybdate reactive phosphate (40.4%), even though pristine BC and BMBC significantly enhanced the soil phosphate leaching. This work fabricated high-performance and eco-friendly LDH-BMBC for phosphate adsorption in solution and phosphate retention in soil and also provide valuable insights into fine biochar support effect on LDHs exfoliation, extending the practical use of the engineered ball milled biochars in environment remediation.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Hidróxidos , Poluentes Químicos da Água/análise
13.
J Hazard Mater ; 416: 126258, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492995

RESUMO

Ball milling (BM) as a solvent-free technology has been widely used to tailor the biochar-based adsorbents with high porosity and well dispersion for enhancing their environmental applications. In this study, the ball-milled layered double hydroxides (LDHs) biochar composite (B-LDHs-BC) was successfully fabricated with BM method for Cd(II) adsorption and the BM effects on the LDHs-BC structure-performance relationships were investigated. The solid-state characterization demonstrated the LDHs were successfully exfoliated by BM on the B-LDHs-BC surface which was identified by the enlarged basal spacing and reduced crystallite size of the LDHs. Although the BET surface area of B-LDHs-BC (226 m2/g) was slightly lower than the ball-milled BC, the B-LDHs-BC had more O-containing functional groups and higher adsorption capacity (119 mg/g). The kinetics experiments indicated that the Cd(II) removal by B-LDHs-BC was through both the physical and chemical adsorption processes, and the liquid membrane diffusion was the rate-controlling step. The positive BM effects mainly induced more abundant acidic functional groups and active adsorption sites, and thus enhanced Cd(II) performance of B-LDHs-BC. This work demonstrated a facile solvent-free method for production of the exfoliated LDHs modified BC composite, and also well illustrated the BM effects which can extend their practical use in environment.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Hidróxidos , Cinética , Poluentes Químicos da Água/análise
14.
Curr Top Med Chem ; 21(13): 1139-1155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109910

RESUMO

ANO1, anoctamin 1(also known as TMEM16A), is the molecular basis of calcium-activated chloride channels with ten transmembrane segments which are widely expressed in mammalian cells, including epithelial cells, vascular smooth muscle tissues, electro-excitatory cells, and some tumor cells. To date, multiple studies have shown that many natural and synthetic compounds have regulatory effects on ANO1. Therefore, ANO1 could be a potential new drug target for the treatment of cancer, pain, diarrhea, hypertension, and asthma. In this study, we review the structure of ANO1 and its involvement in cancer, pain, diarrhea, hypertension, and asthma.


Assuntos
Anoctamina-1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/química , Animais , Anoctamina-1/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Química Farmacêutica , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Neoplasias/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo
16.
Environ Technol ; : 1-9, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34044755

RESUMO

Layer manure (LM) and spent mushroom substrate (SMS) are two kinds of nitrogen (N) rich solid wastes generate in the poultry breeding and agriculture production. Composting is an effective way to recycle the LM and SMS. However, a large amount of N in the LM and SMS was lost via volatilisation during composting, with negative environmental and economic consequences. This study investigated the effect of incorporating biochar at the ratio of 5%, 10%, and 15% (w/w) during co-composting of LM and SMS on ammonia (NH3) and nitrogen oxide (N2O) volatilisation and N retention. After the 35-day composting, the results showed that the pile temperature and seed germination index in biochar treatments were significantly improved in comparison with control treatment. The nitrogen in all treatments was lost in the form of N2O (0.05∼0.1%) and NH3 (13.1∼20.2%). Likewise, the total nitrogen loss was 28.9%, 20.3%, and 24.9%, respectively, of which N2O-N accounts for 0.05∼0.10%. Compared with control treatment, the total amount of NH3 volatilisation in biochar treatments of 5%BC, 10%BC and 15%BC was decreased by 21.2%, 33.1%, and 26.1%, respectively. The total amount of N2O emission was decreased by 39.0%, 13.2%, and 1.6%, respectively. Adding 10% and 15% biochar can significantly reduce NH3 volatilisation while adding 5% biochar treatment didn't significantly reduce NH3 emissions but showed the best performance in reducing N2O emission. The addition of 10% biochar in co-composting of LM and SMS is the recommended dosage that exhibited the best performance in improving composting quality and reducing nitrogen loss.

17.
Sci Total Environ ; 780: 146550, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030346

RESUMO

Cadmium (Cd) pollution and phosphorus (P) leaching in paddy soils has raised the global concern. In this study, two kinds of the low grade phosphate rocks activated by the sodium lignosulfonate (SL) and humic acid (HA) were fabricated for soil Cd passivation and reduction of the soil P leaching simultaneously. The mechanisms of the Cd adsorption and passivation by the activated phosphate rocks (APRs) were investigated through the batch experiment and the indoor culture test (i.e., incubation and pot experiments) in the Cd-polluted paddy soil. The effects of the APRs on the potted rice growth, uptake of Cd by rice and P loss were also studied. In comparison with the superphosphate treatment, the cumulative P loss from SL- and HA-APRs were reduced by the 65.2% and 65.3%. In terms of the Cd passivation, the Cd adsorbed on the APRs was through the chemical ways (i.e., ligand exchange and the formation of internal complexes). The application of the APRs significantly decreased the soil exchangeable Cd by 48.9%-55.0%, while the Fe/Mn oxides-bound Cd and residual Cd increased significantly by 19.6%-20.3% and 50.7%-69.4%, respectively. Pot experiment also suggested that both the APRs treatments (SL- and HA-APRs) significantly diminished soil Cd accumulation in rice (by 72.7% and 62.8%) coupling with the significantly decreased P leaching. These results provide a sustainable way to explore a novel cost-effective, high-efficient and bi-functional mineral-based soil amendments for environmental remediation.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fosfatos , Fósforo , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...