Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 76: 102473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826989

RESUMO

Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.


Assuntos
Rhizobium , Nódulos Radiculares de Plantas , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Nitrogênio , Fixação de Nitrogênio
2.
Front Plant Sci ; 13: 1077996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561443

RESUMO

Striga hermonthica is a root parasitic plant that causes considerable crop yield losses. To parasitize host plants, parasitic plants develop a specialized organ called the haustorium that functions in host invasion and nutrient absorption. The initiation of a prehaustorium, the primitive haustorium structure before host invasion, requires the perception of host-derived compounds, collectively called haustorium-inducing factors (HIFs). HIFs comprise quinones, phenolics, flavonoids and cytokinins for S. hermonthica; however, the signaling pathways from various HIFs leading to prehaustorium formation remain largely uncharacterized. It has been proposed that quinones serve as direct signaling molecules for prehaustorium induction and phenolic compounds originating from the host cell wall are the oxidative precursors, but the overlap and distinction of their downstream signaling remain unknown. Here we show that quinone and phenolic-triggered prehaustorium induction in S. hermonthica occurs through partially divergent signaling pathways. We found that ASBr, an inhibitor of acetosyringone in virulence gene induction in the soil bacterium Agrobacterium, compromised prehaustorium formation in S. hermonthica. In addition, LGR-991, a competitive inhibitor of cytokinin receptors, inhibited phenolic-triggered but not quinone-triggered prehaustorium formation, demonstrating divergent signaling pathways of phenolics and quinones for prehaustorium formation. Comparisons of genome-wide transcriptional activation in response to either phenolic or quinone-type HIFs revealed markedly distinct gene expression patterns specifically at the early initiation stage. While quinone DMBQ triggered rapid and massive transcriptional changes in genes at early stages, only limited numbers of genes were induced by phenolic syringic acid. The number of genes that are commonly upregulated by DMBQ and syringic acid is gradually increased, and many genes involved in oxidoreduction and cell wall modification are upregulated at the later stages by both HIFs. Our results show kinetic and signaling differences in quinone and phenolic HIFs, providing useful insights for understanding how parasitic plants interpret different host signals for successful parasitism.

3.
Plant Cell Physiol ; 63(10): 1446-1456, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36112485

RESUMO

Orobanchaceae parasitic plants are major threats to global food security, causing severe agricultural damage worldwide. Parasitic plants derive water and nutrients from their host plants through multicellular organs called haustoria. The formation of a prehaustorium, a primitive haustorial structure, is provoked by host-derived haustorium-inducing factors (HIFs). Quinones, including 2,6-dimethoxy-p-benzoquinone (DMBQ), are of the most potent HIFs for various species in Orobanchaceae, but except non-photosynthetic holoparasites, Phelipanche and Orobanche spp. Instead, cytokinin (CK) phytohormones were reported to induce prehaustoria in Phelipanche ramosa. However, little is known about whether CKs act as HIFs in the other parasitic species to date. Moreover, the signaling pathways for quinones and CKs in prehaustorium induction are not well understood. This study shows that CKs act as HIFs in the obligate parasite Striga hermonthica but not in the facultative parasite Phtheirospermum japonicum. Using chemical inhibitors and marker gene expression analysis, we demonstrate that CKs activate prehaustorium formation through a CK-specific signaling pathway that overlaps with the quinone HIF pathway at downstream in S. hermonthica. Moreover, host root exudates activated S. hermonthica CK biosynthesis and signaling genes, and DMBQ and CK inhibitors perturbed the prehaustorium-inducing activity of exudates, indicating that host root exudates include CKs. Our study reveals the importance of CKs for prehaustorium formation in obligate parasitic plants.


Assuntos
Orobanchaceae , Parasitos , Striga , Animais , Striga/metabolismo , Citocininas/metabolismo , Parasitos/metabolismo , Orobanchaceae/metabolismo , Plantas/metabolismo , Quinonas/metabolismo , Raízes de Plantas/metabolismo
4.
Nat Commun ; 13(1): 4653, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970835

RESUMO

Parasitic plants are worldwide threats that damage major agricultural crops. To initiate infection, parasitic plants have developed the ability to locate hosts and grow towards them. This ability, called host tropism, is critical for parasite survival, but its underlying mechanism remains mostly unresolved. To characterise host tropism, we used the model facultative root parasite Phtheirospermum japonicum, a member of the Orobanchaceae. Here, we show that strigolactones (SLs) function as host-derived chemoattractants. Chemotropism to SLs is also found in Striga hermonthica, a parasitic member of the Orobanchaceae, but not in non-parasites. Intriguingly, chemotropism to SLs in P. japonicum is attenuated in ammonium ion-rich conditions, where SLs are perceived, but the resulting asymmetrical accumulation of the auxin transporter PIN2 is diminished. P. japonicum encodes putative receptors that sense exogenous SLs, whereas expression of a dominant-negative form reduces its chemotropic ability. We propose a function for SLs as navigators for parasite roots.


Assuntos
Orobanchaceae , Parasitos , Animais , Fatores Quimiotáticos/metabolismo , Produtos Agrícolas/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Orobanchaceae/metabolismo , Parasitos/metabolismo , Raízes de Plantas/metabolismo , Tropismo Viral
5.
Nat Commun ; 13(1): 2976, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624089

RESUMO

Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P. japonicum and prevents the activation of hundreds of genes including cell cycle and xylem development genes. Blocking ABA signaling overcomes nitrogen's inhibitory effects indicating that nitrogen represses haustoria formation by increasing ABA. The effect of nitrogen appears more widespread since nitrogen also inhibits haustoria in the obligate root parasite Striga hermonthica. Together, our data show that nitrogen acts as a haustoria repressing factor and suggests a mechanism whereby parasitic plants use nitrogen availability in the external environment to regulate the extent of parasitism.


Assuntos
Orobanchaceae , Parasitos , Ácido Abscísico/metabolismo , Animais , Nitrogênio/metabolismo , Orobanchaceae/genética , Raízes de Plantas/metabolismo , Plantas/parasitologia
6.
Plant Physiol ; 185(4): 1429-1442, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793920

RESUMO

Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.


Assuntos
Arabidopsis/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Orobanchaceae/parasitologia , Orobanchaceae/ultraestrutura , Oryza/parasitologia , Raízes de Plantas/ultraestrutura , Striga/parasitologia , Striga/ultraestrutura , Arabidopsis/fisiologia , Imageamento Tridimensional , Orobanchaceae/fisiologia , Oryza/fisiologia , Raízes de Plantas/parasitologia
8.
New Phytol ; 230(1): 46-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33202061

RESUMO

Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.


Assuntos
Arabidopsis , Orobanchaceae , Striga , Animais , Arabidopsis/genética , Interações Hospedeiro-Parasita , Orobanchaceae/genética , Raízes de Plantas
9.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115743

RESUMO

Parasitic plants form a specialized organ, a haustorium, to invade host tissues and acquire water and nutrients. To understand the molecular mechanism of haustorium development, we performed a forward genetics screening to isolate mutants exhibiting haustorial defects in the model parasitic plant Phtheirospermum japonicum. We isolated two mutants that show prolonged and sometimes aberrant meristematic activity in the haustorium apex, resulting in severe defects on host invasion. Whole-genome sequencing revealed that the two mutants respectively have point mutations in homologs of ETHYLENE RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 2 (EIN2), signaling components in response to the gaseous phytohormone ethylene. Application of the ethylene signaling inhibitors also caused similar haustorial defects, indicating that ethylene signaling regulates cell proliferation and differentiation of parasite cells. Genetic disruption of host ethylene production also perturbs parasite invasion. We propose that parasitic plants use ethylene as a signal to invade host roots.

10.
Commun Biol ; 3(1): 407, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733024

RESUMO

Tissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish intimate relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. Here we found that the model Orobanchaceae parasitic plant Phtheirospermum japonicum can be grafted on to interfamily species. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Despite different organs, we identified the shared gene expression profile, where cell proliferation- and cell wall modification-related genes are up-regulated. Among genes commonly induced in tissue adhesion between distant species, we showed a gene encoding a secreted type of ß-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.


Assuntos
Arabidopsis/genética , Glicosídeo Hidrolases/genética , Orobanchaceae/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/genética , Orobanchaceae/efeitos adversos , Plantas Geneticamente Modificadas/parasitologia , Simbiose/genética , Aderências Teciduais/genética , Aderências Teciduais/parasitologia , Transcriptoma/genética
11.
Curr Biol ; 29(18): 3041-3052.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31522940

RESUMO

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.


Assuntos
Interações Hospedeiro-Parasita/genética , Striga/genética , Animais , Evolução Biológica , Evolução Molecular , Transferência Genética Horizontal/genética , Germinação , Orobanchaceae/genética , Parasitos/genética , Parasitos/metabolismo , Raízes de Plantas , Sementes , Simbiose
12.
Front Plant Sci ; 10: 1056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555315

RESUMO

Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which infest important crops and cause economic losses of over a billion US dollars worldwide, yet the molecular and cellular processes responsible for such parasitic relationships remain largely unknown. Parasitic species of the Orobanchaceae family form specialized invasion organs called haustoria on their roots to enable the invasion of host root tissues. The process of forming haustoria can be divided into two steps, prehaustorium formation and haustorium maturation, the processes occurring before and after host attachment, respectively. Prehaustorium formation is provoked by host-derived signal molecules, collectively called haustorium-inducing factors (HIFs). Cell wall-related quinones and phenolics have been known for a long time to induce haustoria in many Orobanchaceae species. Although such phenolics are widely produced in plants, structural specificities exist among these molecules that modulate their competency to induce haustoria in different parasitic plant species. In addition, the plant hormone cytokinins, structurally distinct from phenolic compounds, also trigger prehaustorium formation in Orobanchaceae. Recent findings demonstrate their involvement as rhizopsheric HIFs for Orobanche and Phelipanche species and thus address new activities for cytokinins in haustorium formation in Orobanchaceae, as well as in rhizospheric signaling. This review highlights haustorium-inducing signals in the Orobanchaceae family in the context of their host origin, action mechanisms, and species specificity.

13.
Front Plant Sci ; 10: 328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967886

RESUMO

The parasitic witchweed Striga hermonthica causes devastating damage to crops in sub-Saharan Africa, yet the mechanism of its parasitism is not well understood. Parasitic plants form a special organ called a haustorium to obtain water and nutrients from host plants. The haustorium is induced by host-derived small molecules, collectively named haustorium-inducing factors (HIFs). The most active HIF known to date is 2,6-dimethoxy-p-benzoquinone (DMBQ), originally isolated from sorghum root extracts. It has been suggested that DMBQ is produced by oxidation of its precursor, syringic acid, and that reactive oxygen species (ROS) and peroxidases are involved in the process. However, the roles of ROS in haustorium formation after HIF recognition remain to be elucidated. Here, we investigated the effects of various inhibitors of ROS and ROS-regulating enzymes on haustorium formation in S. hermonthica. Inhibitors of NADPH oxidases and peroxidases inhibited haustorium formation during treatment with DMBQ, syringic acid, and host root extracts, suggesting that ROS production and/or regulation via NADPH oxidases and peroxidases are essential for haustorium formation. We observed hydrogen peroxide accumulation in the haustorium upon treatment with various HIFs. Our results suggest that ROS and ROS-regulating enzymes are indispensable in downstream signaling of HIFs for haustorium formation.

14.
Plant Physiol ; 179(4): 1796-1809, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670602

RESUMO

Striga species are parasitic weeds that seriously constrain the productivity of food staples, including cereals and legumes, in Sub-Saharan Africa and Asia. In eastern and central Africa, Striga spp. infest as much as 40 million hectares of smallholder farmland causing total crop failure during severe infestation. As the molecular mechanisms underlying resistance are yet to be elucidated, we undertook a comparative metabolome study using the Striga-resistant rice (Oryza sativa) cultivar 'Nipponbare' and the susceptible cultivar 'Koshihikari'. We found that a number of metabolites accumulated preferentially in the Striga-resistant cultivar upon Striga hermonthica infection. Most apparent was increased deposition of lignin, a phenylpropanoid polymer mainly composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) aromatic units, around the site of interaction in Nipponbare. The increased deposition of lignin was accompanied by induction of the expression of corresponding enzyme-encoding genes in the phenylpropanoid pathway. In addition, perturbing normal lignin composition by knocking down or overexpressing the genes that regulate lignin composition, i.e. p-COUMARATE 3-HYDROXYLASE or FERULATE 5-HYDROXYLASE, enhanced susceptibility of Nipponbare to S hermonthica infection. These results demonstrate that enhanced lignin deposition and maintenance of the structural integrity of lignin polymers deposited at the infection site are crucial for postattachment resistance against S hermonthica.


Assuntos
Interações Hospedeiro-Parasita/genética , Lignina/química , Oryza/genética , Striga/fisiologia , Lignina/genética , Oryza/parasitologia , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia
15.
New Phytol ; 218(2): 710-723, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29498051

RESUMO

Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs.


Assuntos
Interações Hospedeiro-Parasita , Lignina/metabolismo , Orobanchaceae/anatomia & histologia , Striga/anatomia & histologia , Antocianinas/metabolismo , Arabidopsis/parasitologia , Vias Biossintéticas , Oryza/parasitologia , Plantas Geneticamente Modificadas , Quinonas/metabolismo
16.
Semin Cell Dev Biol ; 83: 115-122, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28993253

RESUMO

Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química
17.
United European Gastroenterol J ; 5(5): 725-734, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28815037

RESUMO

BACKGROUND: The biologic and clinical significance of DAND5 remains unknown in colorectal cancer (CRC). OBJECTIVE: Herein, we investigated the function of DAND5 and evaluated its clinical significance in both serum and matched primary tumors in patients with CRC. METHODS: The role of DAND5 was explored in CRC cells and clinical significance of DAND5 was investigated in CRC patients (n = 217) and healthy controls (n = 63). RESULTS: Knockdown of DAND5 significantly decreased CRC cell proliferation, migration and invasion partly associated with epithelial-mesenchymal transition phenotype. Serum DAND5 levels in CRC were significantly higher than in normal controls and accurately distinguished CRC from healthy subjects. High serum DAND5 levels were significantly correlated with tumor differentiation, large tumor size, advanced Tumor Node Metastasis (TNM) stage, lymph node and liver metastasis, high carcinoembryonic antigen level, recurrence, poor overall and disease-free survival. Serum DAND5 level, together with lymph node metastasis, were independent prognostic factors for CRC patients. High DAND5 protein expression in CRC tissues was increased according to TNM stage. A significant positive correlation existed between serum DAND5 levels and matched DAND5 expression in CRC tissues. CONCLUSION: Our data provide novel evidence for the clinical significance of DAND5 as a potential biomarker for CRC prognosis.

18.
Int J Nanomedicine ; 12: 4623-4631, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28721039

RESUMO

Sensitive and quantitative detection of tumor markers is highly required in the clinic for cancer diagnosis and consequent treatment. A field-effect transistor-based (FET-based) nanobiosensor emerges with characteristics of being label-free, real-time, having high sensitivity, and providing direct electrical readout for detection of biomarkers. In this paper, a top-down approach is proposed and implemented to fulfill a novel silicon nano-ribbon FET, which acts as biomarker sensor for future clinical application. Compared with the bottom-up approach, a top-down fabrication approach can confine width and length of the silicon FET precisely to control its electrical properties. The silicon nanoribbon (Si-NR) transistor is fabricated on a Silicon-on-Insulator (SOI) substrate by a top-down approach with complementary metal oxide semiconductor (CMOS)-compatible technology. After the preparation, the surface of Si-NR is functionalized with 3-aminopropyltriethoxysilane (APTES). Glutaraldehyde is utilized to bind the amino terminals of APTES and antibody on the surface. Finally, a microfluidic channel is integrated on the top of the device, acting as a flowing channel for the carcinoembryonic antigen (CEA) solution. The Si-NR FET is 120 nm in width and 25 nm in height, with ambipolar electrical characteristics. A logarithmic relationship between the changing ratio of the current and the CEA concentration is measured in the range of 0.1-100 ng/mL. The sensitivity of detection is measured as 10 pg/mL. The top-down fabricated biochip shows feasibility in direct detecting of CEA with the benefits of real-time, low cost, and high sensitivity as a promising biosensor for tumor early diagnosis.


Assuntos
Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Nanotecnologia/métodos , Nanotubos de Carbono/química , Biomarcadores Tumorais/análise , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Propilaminas/química , Sensibilidade e Especificidade , Silanos/química , Silício/química , Transistores Eletrônicos
19.
J Biol Chem ; 291(38): 19734-45, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27466365

RESUMO

Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal ß-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.


Assuntos
Arabidopsis/fisiologia , Germinação/fisiologia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peroxissomos/metabolismo , Sacarose/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Peroxissomos/genética
20.
Annu Rev Plant Biol ; 67: 643-67, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27128469

RESUMO

Parasitic plants thrive by infecting other plants. Flowering plants evolved parasitism independently at least 12 times, in all cases developing a unique multicellular organ called the haustorium that forms upon detection of haustorium-inducing factors derived from the host plant. This organ penetrates into the host stem or root and connects to its vasculature, allowing exchange of materials such as water, nutrients, proteins, nucleotides, pathogens, and retrotransposons between the host and the parasite. In this review, we focus on the formation and function of the haustorium in parasitic plants, with a specific emphasis on recent advances in molecular studies of root parasites in the Orobanchaceae and stem parasites in the Convolvulaceae.


Assuntos
Convolvulaceae/fisiologia , Orobanchaceae/fisiologia , Raízes de Plantas , Caules de Planta , Plantas Daninhas/fisiologia , Transporte Biológico , Convolvulaceae/crescimento & desenvolvimento , Orobanchaceae/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...