Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-2): 015103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366476

RESUMO

We develop a multitask and multifidelity Gaussian process (MMGP) model to accurately predict and optimize the multiobjective performance of a flapping foil while minimizing the cost of high-fidelity data. Through a comparison of three kernels, we have selected and applied the spectral mixture kernel and validated the robustness and effectiveness of a multiacquisition function. To effectively incorporate data with varying levels of fidelity, we have adopted a linear prior formula-based multifidelity framework. Additionally, Bayesian optimization with a multiacquisition function is adopted by the MMGP model to enable multitask active learning. The results unequivocally demonstrate that the MMGP model serves as a highly capable and efficient framework for effectively addressing the multiobjective challenges associated with flapping foils.

2.
Heliyon ; 9(11): e21597, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053858

RESUMO

Because of their many excellent properties, hollow glass beads (HGBs) are widely used in composite materials; stealth coatings; the aerospace field; the deep-sea field; electrical, thermal and sound insulation materials and military explosives. However, there is currently no method for predicting the strength of HGBs. This paper proposes a probability distribution model for the compressive strength of micro thin-walled HGBs under uniform pressure. The theoretical model was verified by comparing the parameters of 13 types of HGBs. The model showed that compressive strength is inversely proportional to the square root of the radius for the same type of HGBs. Moreover, for different types of HGBs made with identical materials, the compressive strength is only related to the outer diameter and equivalent density. Further study revealed that the particle size of HGBs follows a normal distribution. The failure mode of HGBs under uniform pressure is mode-II. Therefore, the maximum shear stress, which occurs on the inner surface of HGBs, is the dominant factor in the failure process. Furthermore, the shear strength is only inversely proportional to the square root of the radius even for different types of HGBs.

3.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687790

RESUMO

Bionic robotics, driven by advancements in artificial intelligence, new materials, and manufacturing technologies, is attracting significant attention from research and industry communities seeking breakthroughs. One of the key technologies for achieving a breakthrough in robotics is flexible sensors. This paper presents a novel approach based on wavelength and time division multiplexing (WTDM) for distributed optical waveguide shape sensing. Structurally designed optical waveguides based on color filter blocks validate the proposed approach through a cost-effective experimental setup. During data collection, it combines optical waveguide transmission loss and the way of controlling the color and intensity of the light source and detecting color and intensity variations for modeling. An artificial neural network is employed to model and demodulate a data-driven optical waveguide shape sensor. As a result, the correlation coefficient between the predicted and real bending angles reaches 0.9134 within 100 s. To show the parsing performance of the model more intuitively, a confidence accuracy curve is introduced to describe the accuracy of the data-driven model at last.

4.
Front Optoelectron ; 16(1): 16, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338710

RESUMO

We report self-organized periodic nanostructures on amorphous silicon thin films by femtosecond laser-induced oxidation. The dependence of structural periodicity on the thickness of silicon films and the substrate materials is investigated. The results reveal that when silicon film is 200 nm, the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates. In contrast, when the silicon film is 50 nm, the period of nanostructures is much shorter than the laser wavelength, and is dependent on the substrates. Furthermore, we demonstrate that, for the thick silicon films, quasi-cylindrical waves dominate the formation of periodic nanostructures, while for the thin silicon films, the formation originates from slab waveguide modes. Finite-difference time-domain method-based numerical simulations support the experimental discoveries.

5.
Research (Wash D C) ; 6: 0122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223483

RESUMO

Soft pneumatic actuators (SPAs) have attracted enormous attention in the growing field of robotics. Among different SPAs, composite reinforced actuators (CRAs) are widely used because of their simple structure and high controllability. However, multistep molding, a time-consuming method, is still the predominant fabrication method. Here, we propose a multimaterial embedded printing method (ME3P) to fabricate CRAs. In comparison with other 3-dimensional printing methods, our method improves fabrication flexibility greatly. Via the design and fabrication of the reinforced composites' patterns and different geometries of the soft body, we demonstrate actuators with programmable responses (elongation, contraction, twisting, bending, and helical and omnidirectional bending). Finite element analysis is employed for the prediction of pneumatic responses and the inverse design of actuators based on specific actuation needs. Lastly, we use tube-crawling robots as a model system to demonstrate our ability to fabricate complex soft robots for practical applications. This work demonstrates the versatility of ME3P for the future manufacturing of CRA-based soft robots.

6.
Opt Express ; 31(2): 2359-2372, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785251

RESUMO

Due to the bulky interrogation devices, traditional fiber optic sensing system is mainly connected by wire or equipped only for large facilities. However, the advancement in neural network algorithms and flexible materials has broadened its application scenarios to bionics. In this paper, a multi-joint waveguide bending sensor based on color dyed filters is designed to detect bending angles, directions and positions. The sensors are fabricated by casting method using soft silicone rubber. Besides, required optical properties of sensor materials are characterized to better understand principles of the sensor design. Time series neural networks are utilized to predict bending position and angle quantitatively. The results confirm that the waveguide sensor demodulated by the data-driven neural network algorithm performs well and can be used for engineering applications.

7.
Materials (Basel) ; 15(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629648

RESUMO

The fast development of deep-ocean engineering equipment requires more deep-ocean pressure chambers (DOPCs) with a large inner diameter and ultra-high-pressure (UHP). Using the pre-stressed wire-wound (PSWW) concept, cold isostatic pressing (CIP) chambers have become a new concept of DOPCs, which can provide 100% performance of materials in theory. This paper aims to provide a comprehensive design process for a practical metal-made CIP chamber. First, the generalized design equations are derived by considering the fact that the cylinder and wire have different Young's moduli and Poisson's ratios. Second, to verify the theory and the reliability of the CIP chamber, the authors proposed a series of FEA models based on ANSYS Mechanical, including a two-dimensional (2D) model with the thermal strain method (TSM) and a three-dimensional (3D) model with the direct method (DM). The relative errors of the pre-stress coefficient range from 0.17% to 5%. Finally, the crack growth path is predicted by using ANSYS's Separating Morphing and Adaptive Remeshing Technology (SMART) algorithm, and the fatigue life is evaluated by using the unified fatigue life prediction (UFLP) method developed by the authors' group. This paper provides a more valuable basis to the design of DOPCs as well as to the similar pressure vessels than the previous work.

8.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883851

RESUMO

As the ocean development process speeds up, the technical means of ocean exploration are being upgraded. Due to the characteristics of seawater and the complex underwater environment, conventional measurement and sensing methods used for land are difficult to apply in the underwater environment directly. Especially for the seabed topography, it is impossible to carry out long-distance and accurate detection via electromagnetic waves. Therefore, various types of acoustic and even optical sensing devices for underwater applications have come into use. Equipped by submersibles, those underwater sensors can sense underwater wide-range and accurately. Moreover, the development of sensor technology will be modified and optimized according to the needs of ocean exploitation. This paper has made a summary of the ocean sensing technologies applied in some critical underwater scenarios, including geological surveys, navigation and communication, marine environmental parameters, and underwater inspections. In order to contain as many submersible-based sensors as possible, we have to make a trade-off on breadth and depth. In the end, the authors predict the development trend of underwater sensor technology based on the future ocean exploration requirements.

9.
Comput Intell Neurosci ; 2020: 8846250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335543

RESUMO

Nature-inspired computing has attracted huge attention since its origin, especially in the field of multiobjective optimization. This paper proposes a disruption-based multiobjective equilibrium optimization algorithm (DMOEOA). A novel mutation operator named layered disruption method is integrated into the proposed algorithm with the aim of enhancing the exploration and exploitation abilities of DMOEOA. To demonstrate the advantages of the proposed algorithm, various benchmarks have been selected with five different multiobjective optimization algorithms. The test results indicate that DMOEOA does exhibit better performances in these problems with a better balance between convergence and distribution. In addition, the new proposed algorithm is applied to the structural optimization of an elastic truss with the other five existing multiobjective optimization algorithms. The obtained results demonstrate that DMOEOA is not only an algorithm with good performance for benchmark problems but is also expected to have a wide application in real-world engineering optimization problems.


Assuntos
Algoritmos
10.
Genome Announc ; 5(7)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209827

RESUMO

Marinilactibacillus piezotolerans strain 15R is a facultatively anaerobic heterotrophic lactobacillus isolated from deep marine subsurface sediment nearly 2 km below the seafloor in the northwestern Pacific. We report here the first whole-genome sequence of strain 15R. The identified genome sequence has 2,767,908 bp, 35.4% G+C content, and predicted 2,552 candidate protein-coding sequences, with no identified plasmids.

11.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232436

RESUMO

Here, we report the genome sequence of Bacillus subtilis strain 29R7-12, a piezophilic bacterium isolated from coal-bearing sediment down to ~2.4 km below the ocean floor in the northwestern Pacific. The strain is a Gram-positive spore-forming bacterium, closely related to Bacillus subtilis within the phylum Firmicutes This is the first complete genome sequence of a Bacillus subtilis strain from the deep biosphere. The genome sequence will provide a valuable resource for comparative studies of microorganisms from the surface and subsurface environments.

12.
J Acoust Soc Am ; 132(1): 138-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22779462

RESUMO

The radial and translational oscillations of a single cavitation bubble in a standing ultrasound wave were investigated experimentally at various driving acoustic pressures for aqueous ethanol solutions with different bulk molar fractions of ethanol range of 0-1.3 × 10(-3). The results show that both the lower and upper stability thresholds of the acoustic driving pressure decreased as the concentration of ethanol was increased. At a given driving pressure the ambient and maximum bubble sizes increased with increasing ethanol concentration. In addition, as the ethanol was increased, the sonoluminescence intensity decreased while the bubble dynamics remained largely unchanged. The translational oscillation of the levitated bubble, however, became increasingly violent with increasing ethanol concentration. The displacement of the bubble reached 0.7 mm at the highest concentration studied (1.3 × 10(-3)) and the maximum bubble size was found to change as the bubble jumped up and down. This bubble translation may be responsible for the decrease of the acoustic driving pressure threshold and suggests that repetitive injection of ethanol molecules into the bubble takes place. These results may account for the different sensitivities of single bubble and multi-bubble sonoluminescence to the presence of volatile additives.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026304, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463314

RESUMO

The driving parametric regions in frequency-amplitude space and the optimal parameters for single-bubble sonoluminescence (SBSL) in alcohol aqueous solutions are studied systematically by taking measurements of the spectrum and bubble dynamics. The experimental results show that with an increase in alcohol concentration, the region shrinks and shifts. The optimized parameters differ for alcohol solutions having different concentrations, and SBSL driven by fixed parameters dims quickly and is even destroyed immediately with the addition of a small amount of alcohol to pure water. Furthermore, it is seen that the intensity of optimized SBSL decreases as the alcohol concentration increases. The corresponding measurements of the dynamics of the optimized SBSL bubble show that the maximum bubble radius at an alcohol concentration of 1.04 mM is only half that for pure water. Meanwhile, the optimized driving amplitude acquired by direct measurement and that obtained by fitting the radius-time curves with the Rayleigh-Plesset equation both decrease by 12% in the same comparison. Therefore, a decrease in the driving acoustic pressure may be an important reason for the decrease in the optimized SBSL intensity, which should help clarify SBSL mechanisms in alcohol aqueous solutions.

14.
Artigo em Inglês | MEDLINE | ID: mdl-21622051

RESUMO

Experiments were performed to size, count, and obtain shell parameters for individual ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters (shear modulus and shear viscosity) were quantified at different acoustic pressures (from 95 to 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of the contrast agent microbubbles is consistent with manufacturer specifications. The shell shear viscosity increases with increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters.


Assuntos
Meios de Contraste/química , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Microbolhas , Transdutores , Ultrassonografia/instrumentação , Módulo de Elasticidade , Desenho de Equipamento , Modelos Químicos , Distribuição Normal , Tamanho da Partícula , Resistência ao Cisalhamento , Viscosidade
15.
J Control Release ; 145(1): 40-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20398711

RESUMO

Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure (P(-); 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0MPa), total treatment time (0, 5, 10, 20, 40 or 60s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters (e.g., P(-), total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect.


Assuntos
DNA/administração & dosagem , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Fonoforese , Polietilenoimina/química , Sonicação , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , DNA/genética , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Eletrônica de Varredura , Plasmídeos , Transfecção
16.
J Acoust Soc Am ; 125(6): 3597-600, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19507941

RESUMO

A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 2): 035301, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18851095

RESUMO

The time-resolved spectra of single-bubble sonoluminescence (SBSL) in sulfuric acid have been observed with a streak camera after a spectrograph. The spectral center evolves from infrared to ultraviolet gradually within a SBSL duration, which corresponds to an increase of temperature. The peak temperature within one sonoluminescence (SL) duration is 5-9 times higher than the average temperature based on the average spectrum in our experiment. Furthermore, the ratio of the peak temperature to average temperature increases with the increase of driving pressure. The SBSL flash dies out after a dramatic heating-up, and there is no cooling procedure observed at the time resolution of 110 SL duration, which is incompatible with the radius-related adiabatic heating model as the mechanism of SBSL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...