Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 608(Pt 1): 504-512, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626992

RESUMO

As a typical two-dimensional (2D) metal chalcogenides and visible-light responsive semiconductor, zinc indium sulfide (ZnIn2S4) has attracted much attention in photocatalysis. However, the high recombination rate of photogenerated electrons and holes seriously limits its performance for hydrogen production. In this work, we report in-situ photodeposition of Ni clusters in hierarchical ZnIn2S4 nanoflowers (Ni/ZnIn2S4) to achieve unprecedented photocatalytic hydrogen production. The Ni clusters not only provide plenty of active sites for reactions as evidenced by in-situ photoluminescence measurement, but also effectively accelerate the separation and migration of the photogenerated electrons and holes in ZnIn2S4. Consequently, the Ni/ZnIn2S4 composites exhibit good stability and reusability with highly enhanced visible-light hydrogen production. In particular, the best Ni/ZnIn2S4 photocatalyst exhibits an unprecedented hydrogen production rate of 22.2 mmol·h-1·g-1, 10.6 times that of the pure ZnIn2S4 (2.1 mmol·h-1·g-1). And its apparent quantum yield (AQY) is as high as 56.14% under 450 nm monochromatic light. Our work here suggests that depositing non-precious Ni clusters in ZnIn2S4 is quite promising for the potential practical photocatalysis in solar energy conversion.

2.
J Am Chem Soc ; 142(16): 7379-7385, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32259425

RESUMO

A series of rhodium complexes bearing sterically and electronically tunable cyclopentadienyl ligands, prepared by utilizing Co2(CO)8-mediated [2+2+1] cyclization as a key step, were synthesized. In the presence of 2.5 mol% of CpmRh4, unprecedented enantioselective [4+1] annulation reaction of benzamides and alkenes was achieved with a broad substrate scope under mild reaction conditions, providing a variety of isoindolinones with excellent regio- and enantioselectivity (up to 94% yield, 97:3 er). Preliminary mechanistic studies suggest that the reaction involves an oxidative Heck reaction and an intramolecular enantioselective alkene hydroamination reaction.

3.
J Am Chem Soc ; 138(16): 5242-5, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27070297

RESUMO

The vastly increasing application of chiral Cp ligands in asymmetric catalysis results in growing demand for novel chiral Cp ligands. Herein, we report a new class of chiral Cp ligands based on 1,1'-spirobiindane, a privileged scaffold for chiral ligands and catalysts. The corresponding Rh complexes are shown to be excellent catalysts in asymmetric oxidative coupling reactions, providing axially chiral biaryls in 19-97% yields with up to 98:2 er.

4.
World J Gastroenterol ; 10(16): 2352-6, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15285018

RESUMO

AIM: To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. METHODS: Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. RESULTS: rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. CONCLUSION: Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.


Assuntos
Heme Oxigenase (Desciclizante)/genética , Cromatografia em Gel , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1 , Humanos , Cinética , Proteínas de Membrana , Modelos Moleculares , Peso Molecular , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição
5.
Shi Yan Sheng Wu Xue Bao ; 37(5): 375-83, 2004 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-15636365

RESUMO

Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.


Assuntos
Heme Oxigenase-1/química , Heme Oxigenase-1/metabolismo , Western Blotting , Cromatografia , Simulação por Computador , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/isolamento & purificação , Humanos , Estrutura Terciária de Proteína
6.
World J Gastroenterol ; 8(6): 1123-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12439938

RESUMO

AIM: To purify and identify heme oxygenase (HO) isomers which exist in rat liver, spleen and brain treated with hematin and phenylhydrazine and in untreated rat liver and to investigate the characteristics of HO isomers, to isolate and confirm the rat HO-1 cDNA that actually encodes HO-1 by expressing cDNA in monkey kidney cells (COS-1 cells), to prepare the rat heme oxygenase-1 (HO-1) mutant and to detect inhibition of HO-1 mutated enzyme. METHODS: First, rat liver, spleen and brain microsomal fractions were purified by DEAE-Sephacel and hydroxylapatite. The characteristics including activity, immunity and inducibility of two isomers (HO-1 and HO-2), and their apparent molecular weight were measured by detecting enzymatic activities, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis, respectively. Second, plasmid pcDNA3HO1 containing native rat HO-1 cDNA and pcDNA3HO1D25 carrying mutated rat HO-1 cDNA (His25Ala) were constructed by site-directed mutagenesis. COS-1 cells transfected with pcDNA3HO1 and pcDNA3HO1D25 were collected and disrupted by sonication, the microsomes were prepared by ultracentrifugation. Third, the inhibition of rat HO-1 mutant was analyzed. RESULTS: Two isomers were purified and identified in treated rat liver, spleen, brain and untreated rat liver. HO-1 was the predominant form with a ratio of 2.0:1 and 3.2:1 of HO-1 and HO-2 in liver and spleen, respectively, but only the activity of HO-2 in the brain and untreated liver could be detected. The apparent molecular weights of HO-1 and HO-2 were about M(r)30 000 and M(r) 36 000 under reducing conditions, respectively. The antiserum against liver HO-2 was employed in Western blotting analysis, the reactivity of HO-1 in the liver was not observed. The plasmid pcDNA3HO1 was highly expressed in endoplasmic reticulum of transfected COS-1 cells. The specific activity was -5-fold higher than that of the control. However, the enzyme activity of mutated HO-1 declined. While an equal amount of mutant was added to the enzyme reaction system, the levels of bilirubin decreased 42 %. CONCLUSION: The studies suggest that HO-1 and HO-2 exist in the hematin and phenylhydrazine treated rat liver and spleen, but only HO-2 in the brain and untreated liver. Two constitutive forms are different in molecular weight, inducibility and immunochemical properties. The activity of expressed HO-1 in COS-1 cells is higher than that of purified enzyme from rat spleen tissue. It suggests that this clone has an insert of 1030 base-pairs encodes HO-1. His25Ala mutant reduced the formation of bilirubin and it suggests that the mutant could completely bind the heme with native enzyme.


Assuntos
Heme Oxigenase (Desciclizante)/análise , Animais , Sequência de Bases , Encéfalo/enzimologia , Células COS , DNA Complementar/genética , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase-1 , Isoenzimas/análise , Isoenzimas/genética , Fígado/enzimologia , Peso Molecular , Mutagênese Sítio-Dirigida , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Baço/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA