Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci China Life Sci ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38926247

RESUMO

Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.

2.
Clin Transl Oncol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814541

RESUMO

PURPOSE: EGFR classical mutations respond well to EGFR tyrosine kinase inhibitors. However, it is uncertain whether currently available EGFR-TKIs are effective against rare EGFR mutations and compound mutations. Herein, the effectiveness of almonertinib and alflutinib, the third-generation tyrosine kinase inhibitors developed in China, on rare EGFR S768I mutations and compound mutations is identified. METHODS: In this study, using CRISPR method, four EGFR S768I mutation cell lines were constructed, and the sensitivity of EGFR to almonertinib and alflutinib was tested, with positive controls being the 1st (gefitinib), 2nd (afatinib), and 3rd (osimertinib) generation drugs. RESULTS: The present results indicate that almonertinib and alflutinib can effectively inhibit cell viability and proliferation in rare EGFR S768I mutations through the ERK or AKT pathways in a time-dependent manner, by blocking the cell cycle and inhibiting apoptosis. CONCLUSIONS: These findings suggest that almonertinib and alflutinib may be potential therapeutic options for non-small cell lung cancer patients with the EGFR S768I mutation.

3.
Chem Biol Interact ; 395: 111033, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38710274

RESUMO

The tertiary mutation C797S in the structural domain of the EGFR kinase is a common cause of resistance to third-generation EGFR tyrosine kinase inhibitors (TKIs). In this study, we used a potent, selective and irreversible inhibitor, BDTX-189, to target EGFR C797S triple mutant cells for cell activity. The study constructed the H1975-C797S (EGFR L858R/T790 M/C797S) cell line using the CRISPR/Cas9 method and investigated its potential as a fourth-generation tyrosine kinase inhibitor via chemosensitivity approach. The results demonstrated its ability to induce cytotoxic effects, and inhibit EGFR L858R/T790 M/C797S cell growth and proliferation in a dose-dependent manner. Meanwhile, BDTX-189 reduces the protein phosphorylation levels of EGFR, ERK, and AKT, promoting apoptosis. Furthermore, BDTX-189 not only inhibits common EGFR triple mutations but also effectively inhibits EGFR L858R mutation and EGFR L858R/T790 M mutation. These findings support the cytotoxic effect of BDTX-189 and its inhibitory effect on cell division and proliferation with the EGFR C797S triple mutation.


Assuntos
Apoptose , Proliferação de Células , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
Plant Sci ; 321: 111311, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696911

RESUMO

Plant trichomes are specialized epidermal cells that protect plants from insects and pathogens. In Arabidopsis, epidermal hairs decrease as internodes increase in height, with only few epidermal hairs produced on the sepals abaxial surface of the early flowers. TRIPTYCHON (TRY) is known to be a negative regulator of epidermal hair development in Arabidopsis, suppressing the formation of ectopic epidermal hairs in the inflorescence. Here, we reported that the second intron of TRY gene plays a critical role in trichome spatial distribution in Arabidopsis. The expression of TRY rises with the increasing stem nodes and reaches the peak in the inflorescence, while the trichomes distribution decrease. The transgenic plants showed that TRY promoter could only drive the genomic instead of coding sequences combined with GUS reporter gene, which indicates that the regulatory elements of TRY expression in inflorescence could be located in the intron regions. Multiple SPLs and MADS-box binding sites were found in the TRY intron2 sequence. Further genetic and biochemistry assays revealed that the flowering-related genes such as SPL9 could bind to these cis-elements directly, contributing to the TRY spatial expression. Since cotton fiber and Arabidopsis trichomes share similar regulatory mechanism, extended analysis showed that the intron2 of cotton TRY genes also contain the cis-elements. Thus, the introns harboring the transcription element may be the general way to regulate the gene expression in different plants and provides molecular clues for the related crops' traits design.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inflorescência/genética , Inflorescência/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transativadores/metabolismo
5.
PLoS Genet ; 10(4): e1004266, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699192

RESUMO

The miR156-targeted squamosa promoter binding protein like (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted lost meristems 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Polaridade Celular/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Proteínas Nucleares/genética , Caules de Planta/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...