Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(24): 7512-7521, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678760

RESUMO

While roughening the surface of neural implants has been shown to significantly improve their performance, the mechanism for this improvement is not understood, preventing systematic optimization of surfaces. Specifically, prior work has shown that the cellular response to a surface can be significantly enhanced by coating the implant surface with inorganic nanoparticles and neuroadhesion protein L1, and this improvement occurs even when the surface chemistry is identical between the nanoparticle-coated and uncoated electrodes, suggesting the critical importance of surface topography. Here, we use transmission electron microscopy to characterize the topography of bare and nanoparticle-coated implants across 7 orders of magnitude in size, from the device scale to the atomic scale. The results reveal multiscale roughness, which cannot be adequately described using conventional roughness parameters. Indeed, the topography is nearly identical between the two samples at the smallest scales and also at the largest scales but vastly different in the intermediate scales, especially in the range of 5-100 nm. Using a multiscale topography analysis, we show that the coating causes a 76% increase in the available surface area for contact and an order-of-magnitude increase in local surface curvature at characteristic sizes corresponding to specific biological structures. These are correlated with a 75% increase in bound proteins on the surface and a 134% increase in neurite outgrowth. The present investigation presents a framework for analyzing the scale-dependent topography of medical device-relevant surfaces, and suggests the most critical size scales that determine the biological response to implanted materials.


Assuntos
Nanopartículas , Titânio , Materiais Revestidos Biocompatíveis/química , Nanopartículas/química , Propriedades de Superfície , Titânio/química
2.
Tissue Eng Part A ; 27(17-18): 1128-1139, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164704

RESUMO

An effective strategy for sustained neurotrophic factor (NTF) delivery to sites of peripheral nerve injury (PNI) would accelerate healing and enhance functional recovery, addressing the major clinical challenges associated with the current standard of care. In this study, scaffold-free cell sheets were generated using human dental pulp stem/progenitor cells, that endogenously express high levels of NTFs, for use as bioactive NTF delivery systems. Additionally, the effect of fibroblast growth factor 2 (FGF2) on NTF expression by dental pulp cell (DPC) sheets was evaluated. In vitro analysis confirmed that DPC sheets express high levels of NTF messenger RNA (mRNA) and proteins, and the addition of FGF2 to DPC sheet culture increased total NTF production by significantly increasing the cellularity of sheets. Furthermore, the DPC sheet secretome stimulated neurite formation and extension in cultured neuronal cells, and these functional effects were further enhanced when DPC sheets were cultured with FGF2. These neuritogenic results were reversed by NTF inhibition substantiating that DPC sheets have a positive effect on neuronal cell activity through the production of NTFs. Further evaluation of DPC sheets in a rat facial nerve crush injury model in vivo established that in comparison with untreated controls, nerves treated with DPC sheets had greater axon regeneration through the injury site and superior functional recovery as quantitatively assessed by compound muscle action potential measurements. This study demonstrates the use of DPC sheets as vehicles for NTF delivery that could augment the current methods for treating PNIs to accelerate regeneration and enhance the functional outcome. Impact statement The major challenges associated with current treatments of peripheral nerve injuries (PNIs) are prolonged repair times and insufficient functional recovery. Dental pulp stem/progenitor cells (DPCs) are known to endogenously express high levels of neurotrophic factors (NTFs), growth factors that enhance axon regeneration. In this study, we demonstrate that scaffold-free DPC sheets can act as effective carrier systems to facilitate the delivery and retention of NTF-producing DPCs to sites of PNIs and improve functional nerve regeneration. DPC sheets have high translational feasibility and could augment the current standard of care to enhance the quality of life for patients dealing with PNIs.


Assuntos
Axônios , Regeneração Nervosa , Animais , Polpa Dentária , Nervo Facial , Humanos , Fatores de Crescimento Neural , Qualidade de Vida , Ratos
3.
Biomaterials ; 32(26): 6316-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21636128

RESUMO

On demand release of anti-inflammatory drug or neurotropic factors have great promise for maintaining a stable chronic neural interface. Here we report the development of an electrically controlled drug release system based on conducting polymer and carbon nanotubes. Drug delivery research using carbon nanotubes (CNTs) has taken advantage of the ability of CNTs to load large amounts of drug molecules on their outer surface. However, the utility of the inner cavity of CNTs, which can increase the drug loading capacity, has not yet been explored. In this paper, the use of multi-wall CNTs as nanoreserviors for drug loading and controlled release is demonstrated. The CNTs are pretreated with acid sonication to open their ends and make their outer and inner surfaces more hydrophilic. When dispersed and sonicated in a solution containing the anti-inflammatory drug dexamethasone, experiments show that the pretreated CNTs are filled with the drug solution. To prevent the unwanted release of the drug, the open ends of the drug-filled CNTs are then sealed with polypyrrole (PPy) films formed through electropolymerization. The prepared electrode coating significantly reduced the electrode impedance, which is desired for neural recording and stimulation. More importantly, the coating can effectively store drug molecules and release the bioactive drug in a controlled manner using electrical stimulation. The dexamethasone released from the PPy/CNT film was able to reduce lipopolysaccharide induced microglia activation to the same degree as the added dexamethasone.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Dexametasona/administração & dosagem , Dexametasona/química , Sistemas de Liberação de Medicamentos , Nanotubos de Carbono/química , Linhagem Celular , Eletroquímica , Humanos , Espectroscopia Fotoeletrônica
4.
Biomaterials ; 32(24): 5551-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21601278

RESUMO

The function and longevity of implantable microelectrodes for chronic neural stimulation depends heavily on the electrode materials, which need to present high charge injection capability and high stability. While conducting polymers have been coated on neural microelectrodes and shown promising properties for chronic stimulation, their practical applications have been limited due to unsatisfying stability. Here, poly(3,4-ethylenedioxythiophene) (PEDOT) doped with pure carbon nanotubes (CNTs) was electrochemically deposited on Pt microelectrodes to evaluate its properties for chronic stimulation. The PEDOT/CNT coated microelectrodes demonstrated much lower impedance than the bare Pt, and the PEDOT/CNT film exhibited excellent stability. For both acute and chronic stimulation tests, there is no significant increase in the impedance of the PEDOT/CNT coated microelectrodes, and none of the PEDOT/CNT films show any cracks or delamination, which have been the limitation for many conducting polymer coatings on neural electrodes. The charge injection limit of the Pt microelectrode was significantly increased to 2.5 mC/cm(2) with the PEDOT/CNT coating. Further in vitro experiments also showed that the PEDOT/CNT coatings are non-toxic and support the growth of neurons. It is expected that this highly stable PEDOT/CNT composite may serve as excellent new material for neural electrodes.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Eletrodos , Nanotubos de Carbono/química , Neurônios/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Animais , Células Cultivadas , Eletroquímica/métodos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley
5.
Biomaterials ; 32(3): 681-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20933270

RESUMO

Brain tissue inflammatory responses, including neuronal loss and gliosis at the neural electrode/tissue interface, limit the recording stability and longevity of neural probes. The neural adhesion molecule L1 specifically promotes neurite outgrowth and neuronal survival. In this study, we covalently immobilized L1 on the surface of silicon-based neural probes and compared the tissue response between L1 modified and non-modified probes implanted in the rat cortex after 1, 4, and 8 weeks. The effect of L1 on neuronal health and survival, and glial cell reactions were evaluated with immunohistochemistry and quantitative image analysis. Similar to previous findings, persistent glial activation and significant decreases of neuronal and axonal densities were found at the vicinity of the non-modified probes. In contrast, the immediate area (100 µm) around the L1 modified probe showed no loss of neuronal bodies and a significantly increased axonal density relative to background. In this same region, immunohistochemistry analyses show a significantly lower activation of microglia and reaction of astrocytes around the L1 modified probes when compared to the control probes. These improvements in tissue reaction induced by the L1 coating are likely to lead to improved functionality of the implanted neural electrodes during chronic recordings.


Assuntos
Gliose/metabolismo , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Gliose/patologia , Imuno-Histoquímica , Masculino , Microglia/efeitos dos fármacos , Modelos Biológicos , Molécula L1 de Adesão de Célula Nervosa/química , Ratos , Ratos Sprague-Dawley
6.
Biomaterials ; 27(11): 2405-13, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16343612

RESUMO

In the field of neural tissue engineering, electrically conducting, biocompatible surfaces are of great interest. Over the past several decades conducting polymers have been studied as candidate surfaces because they fit these criteria. Several attempts have been made to combine the conductivity and biocompatibility of conducting polymers with biomolecules that could promote specific cell attachment and growth. In this report the laminin fragments CDPGYIGSR (p31) and RNIAEIIKDI (p20) are used as dopants in electropolymerization of the conducting polymer polypyrrole (PPy). The electrical properties of the resulting films are analyzed by impedance spectroscopy and cyclic voltammetry and compared to gold. PPy/p20 surfaces consistently demonstrate the lowest impedance and largest charge capacity for a given deposition charge. Next, in vitro studies using primary neurons cultured in a defined media and primary astrocytes in a serum containing media were performed; neuron density and neurite length, as well as astrocyte density, were quantified. Surfaces doped with a combination of the two peptides (PPy/p20-p31) consistently supported the highest neuronal density. It is shown that surfaces doped with the laminin fragment p20 had significantly longer primary neurites than either the p31 doped or poly(styrenesulfonate) doped PPy surfaces. Finally, the astrocyte studies demonstrate that PPy surfaces have significantly less astrocyte adhesion in culture than the common electrode material, gold.


Assuntos
Materiais Biocompatíveis/química , Laminina/química , Fragmentos de Peptídeos/química , Polímeros/química , Pirróis/química , Sequência de Aminoácidos , Animais , Células Cultivadas , Condutividade Elétrica , Ouro , Teste de Materiais , Microscopia Eletrônica de Varredura , Tecido Nervoso , Condução Nervosa , Neurônios/fisiologia , Ratos , Propriedades de Superfície , Engenharia Tecidual
7.
Artigo em Inglês | MEDLINE | ID: mdl-17945991

RESUMO

Many implantable devices require large capacity batteries implanted in the body. Transcutaneous battery recharging can effectively maintain the longevity of these implants. Based on this consideration we have developed a transcutaneous battery recharging circuit unit which takes advantages of skin volume conduction. This unit is able to pass 2.8 mA from the outside to the inside of pig skin with a current transmitting efficiency of 27%. Theoretical analysis and experiments have validated that this battery recharging technology is an effective approach. In this research we have constructed an x-type equivalent circuit model of skin volume conduction for battery recharging. The parameters of the x-type equivalent circuit can be easily measured and used to evaluate the battery charging system characteristics, such as the rechargeable prerequisite and the current transmitting efficiency limitation. We have analyzed the transcutaneous current transmitting efficiency by applying the x-type equivalent circuit model and discussed approaches for enhancing current transmitting efficiency.


Assuntos
Fontes de Energia Elétrica , Eletrodos Implantados , Fenômenos Eletromagnéticos/instrumentação , Modelos Biológicos , Fenômenos Fisiológicos da Pele , Telemetria/instrumentação , Animais , Simulação por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Telemetria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...