Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Methods ; 16(13): 1862-1869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463013

RESUMO

Cervical cancer (CC) remains one of the most severe global health challenges affecting women, primarily due to persistent infection with high-risk human papillomavirus (HPV) subtypes, particularly with HPV16 and HPV 18. Effective detection of these high-risk HPV strains is crucial for CC prevention. Current screening programs for HPV DNA include PCR and in situ hybridization, which are accurate and sensitive. However, these approaches demand a high level of expertise, along with expensive instruments and consumables, thus hindering their widespread use. Therefore, there is a compelling demand to develop an efficient, straightforward, and cost-effective method. Herein, we propose a lateral flow immunoassay (LFIA) method based on Au@PdPt nanoparticles for the simultaneous detection and genotyping of HPV16 and HPV18 within 15 min. This innovative approach allows for qualitative assessment by the naked eye and enables semi-quantitative detection through a smartphone. In this study, under optimal conditions, the qualitative visual limits of detection (vLOD) for HPV16 and HPV18 reached 0.007 nM and 0.01 nM, respectively, which were 32-fold and 20-fold more sensitive than conventional AuNPs-LFIA for HPV16 and HPV18, respectively. Meanwhile, semi-quantitative limits of detection (qLOD) for HPV16 and HPV18 were 0.05 nM and 0.02 nM, respectively. In conclusion, our formulated approach represents a significant step forward in HPV detection and genotyping, with the potential to enhance accessibility and effectiveness in the early diagnosis of CC at the point of care and beyond.


Assuntos
Nanopartículas Metálicas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 18/genética , Papillomavirus Humano 16/genética , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/prevenção & controle , Ouro , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/prevenção & controle , DNA Viral/genética , DNA Viral/análise , Imunoensaio
2.
Anal Methods ; 16(10): 1508-1514, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372146

RESUMO

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally, ranking third in cancer deaths. Early diagnosis of HCC markers is imperative for effective prognosis and treatment. This study explores the utility of glycocholic acid (GCA) and alpha-fetoprotein (AFP) as biomarkers for liver diseases, with a specific focus on their simultaneous detection for enhanced diagnostic and prognostic capabilities. Harnessing the benefits of lateral flow immunoassay (LFIA), such as operational simplicity, speed, and accuracy, we engineered AgPd nanocomposites with antibodies targeting GCA and AFP. Under the optimized conditions, the visual detection limit for GCA was established at 50 ng mL-1 and the cut-off value at 104 ng mL-1. And for AFP, the visual detection limit was 0.1 ng mL-1 and the cut-off value was 500 ng mL-1. The accuracy and feasibility of the strips were validated through the detection of 39 actual serum samples. The results highlight the potential of LFIA as a rapid and effective tool for clinical diagnosis. The developed LFIA method not only demonstrates accuracy and feasibility but also presents a promising avenue for the early diagnosis of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais , Ácido Glicocólico , Imunoensaio/métodos
3.
Anal Chem ; 95(14): 6038-6045, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972550

RESUMO

The soluble epoxide hydrolase (sEH) is possibly both a marker for and target of numerous diseases. Herein, we describe a homogeneous mix-and-read assay for the detection of human sEH based on using split-luciferase detection coupled with anti-sEH nanobodies. Selective anti-sEH nanobodies were individually fused with NanoLuc Binary Technology (NanoBiT), which consists of a large and small portion of NanoLuc (LgBiT and SmBiT, respectively). Different orientations of the LgBiT and SmBiT-nanobody fusions were expressed and investigated for their ability to reform the active NanoLuc in the presence of the sEH. After optimization, the linear range of the assay could reach 3 orders of magnitude with a limit of detection (LOD) of 1.4 ng/mL. The assay has a high sensitivity to human sEH and reached a similar detection limit to our previously reported conventional nanobody-based ELISA. The procedure of the assay was faster (30 min total) and easy to operate, providing a more flexible and simple way to monitor human sEH levels in biological samples. In general, the immunoassay proposed here offers a more efficient detection and quantification approach that can be easily adapted to numerous macromolecules.


Assuntos
Anticorpos de Domínio Único , Luciferases/análise , Humanos , Epóxido Hidrolases/metabolismo , Fatores de Tempo , Solubilidade , Anticorpos de Domínio Único/imunologia , Calibragem , Animais , Camundongos , Ratos
4.
Anal Bioanal Chem ; 414(23): 6939-6946, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35945290

RESUMO

Ferritin, widely present in liver and spleen tissue, is considered as a serological biomarker for liver diseases and cancers. The detection of ferritin may be an important tool in health diagnosis. In this study, 14 non-immunized chicken spleens were utilized to construct a single-chain fragment (scFv) phage library. After 4 rounds of panning, 7 unique clones were obtained. The optimal clone was further screened and combined with NanoLuc luciferase (Nluc) as a dual functional immunoprobe to bioluminescent enzyme immunoassay (BLEIA), which was twice as sensitive as its parental scFv-based double-sandwich enzyme-linked immunoassay (ds-ELISA). The cross-reactivity analysis revealed that the proposed methods were highly selective and suitable for clinical detection. To further verify the performance of the immunoassays, serum samples were tested by the proposed methods and a commercial ELISA kit, and there was a good correlation between the results. These results suggested that scFv fused with Nluc might be a powerful dual functional tool for rapid, practically reliable, and highly sensitive ferritin detection.


Assuntos
Anticorpos de Cadeia Única , Ensaio de Imunoadsorção Enzimática , Ferritinas , Imunoensaio , Técnicas Imunoenzimáticas , Luciferases/genética , Biblioteca de Peptídeos
5.
J Hazard Mater ; 435: 129082, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650752

RESUMO

Multimodal lateral flow immunoassay (LFIA) has displayed its potential to improve practicability and elasticity of point-of-care testing. Herein, multifunctional core-shell-shell Au@Pt@Ag NPs loaded with dual-layer Raman reporter molecules of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) with a characteristic combination of color-photothermal-Raman performance were constructed for colorimetric LFIA (CM-LFIA), photothermal LFIA (PT-LFIA) and surface-enhanced Raman scattering-based LFIA (SERS-LFIA), respectively. The highly specific nanoprobes, being obtained through the combination of the resulted dual-layer DTNB modified Au@Pt@Ag NPs with the antibody, were triumphantly utilized in exploring multimodal LFIA with one visual qualitative and two optional quantitative modes with excellent sensing sensitivity. Under optimal conditions, the limit of detection (LOD) for the model hazardous analyte dehydroepiandrosterone (DHEA) were 1.0 ng mL-1 for CM-LFIA, 0.42 ng mL-1 for PT-LFIA, and 0.013 ng mL-1 for SERS-LFIA, three of which were over 100-fold, 200-fold and 7 000-fold more sensitive than conventional visual AuNPs-based LFIA, respectively. In addition, the quantitative PT-LFIA and SERS-LFIA sensors worked well in spiked real samples with acceptable recoveries of 96.2 - 106.7% and 98.2 - 105.2%, respectively. This assay demonstrated that the developed multimodal LFIA had a great potential to be a powerful tool for accurate tracing hazardous analytes in complex samples.


Assuntos
Ouro , Nanopartículas Metálicas , Ácido Ditionitrobenzoico , Imunoensaio/métodos , Análise Espectral Raman/métodos
6.
Ecotoxicol Environ Saf ; 239: 113668, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623151

RESUMO

Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.


Assuntos
Poluentes Ambientais , Resíduos de Praguicidas , Poluentes Ambientais/análise , Corantes Fluorescentes , Limite de Detecção , Paraoxon/análise , Resíduos de Praguicidas/análise , Reprodutibilidade dos Testes
7.
Microsc Microanal ; : 1-14, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575050

RESUMO

This paper exploited an alternative approach to prepare high-quality speckle patterns by uniformly dispersing nano-silica particles onto sample surfaces, helping digital image correlation (DIC) acquire the maximum spatial resolution of local strain up to 92 nm. A case study was carried out by combining this speckle pattern fabrication method with SEM-DIC and electron backscattering diffraction (EBSD). Thus, in situ mapping of local strain with ultra-high spatial resolution and microstructure in commercially pure titanium during plastic deformation could be achieved, which favored revealing the effect of slip transfer on shear strain near grain boundaries. Moreover, the slip systems could be easily identified via the combination of the SEM-DIC and EBSD techniques even though no obvious deformation trace was captured in secondary electron images. Additionally, the complex geometric compatibility factor $( {m}^{\prime}_c)$ relating to geometric compatibility factors (mʹ) and Schmid factors was proposed to predict the shear strain (εxy) at grain boundaries.

8.
Protein Expr Purif ; 195-196: 106094, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436616

RESUMO

Glypican-3 (GPC3) has a promise to be the diagnostic biomarker as well as therapeutic target for hepatocellular carcinoma (HCC). Nanobody have the great potential in clinical diagnosis and treatment for their characteristics of small size, high solubility, stability, manipulability, binding advantages, and ease of production. In this study, the recombinant glypican-3-N terminal (GPC3-N) protein was expressed as inclusion body in E. coli BL21(DE3)pLysS cells and then purified, which is then used as the immunogen to construct nanobody phage library. The positive clone (named MF15) was obtained by four rounds of bio-panning, and then transformed into the E. coil TOP10F' cells to express nanobody protein, with the molecular weight of 19 kDa. Both Western blot and immunofluorescence analysis revealed that bacterially expressed GPC3-N protein is biologically active, and MF15 could specifically recognized native GPC3 expressed in HepG2 cells. The results in this study would provide the technical support for the development of diagnostic kits and antibody drugs targeting GPC3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glipicanas/química , Glipicanas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
9.
Analyst ; 147(1): 55-65, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34821249

RESUMO

As a neglected member of the platinum group elements, osmium, the metal with the highest density in the earth, is very suitable for the preparation of a peroxidase with high catalytic activity and stability, and can also be associated with the development of a sensor. In this study, we accessed Os nano-hydrangeas (OsNHs) with one-pot synthesis and utilized them in a bifunctional immunosensor that can present both catalytic chromogenic and tinctorial signal for nanozyme-linked immunosorbent assay (NLISA) and lateral flow immunoassay (LFIA) for use in folic acid (FA) detection. In the OsNHs-NLISA, the linear range is from 9.42 to 167.53 ng mL-1. The limit of detection (LOD) is 4.03 ng mL-1 and the IC50 value is 39.73 ng mL-1. In OsNHs-LFIA, the visual cut-off value and limit of detection (v-LOD) are 100 ng mL-1 and 0.01 ng mL-1, respectively. Additionally, the outcome from the specificity and spiked sample analysis offered recovery from the spiked milk powder sample ranging from 93.9 to 103.6% with a coefficient of variation under 4.9%, compared with UPLC-MS/MS for a correlation of R2 = 0.999 and admirable validation. The promising application of the OsNHs can also be used in other bioprobes, and this bifunctional immunosensor analysis mode is suitable for diversified analytes.


Assuntos
Técnicas Biossensoriais , Hydrangea , Cromatografia Líquida , Ácido Fólico , Imunoensaio , Osmio , Espectrometria de Massas em Tandem
10.
Anal Bioanal Chem ; 413(23): 5733-5742, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476526

RESUMO

Palladium nanoparticles (PdNPs) are composed mainly of inert noble metals, and their outstanding properties have attracted wide attention. PdNPs are not only capable of mimicking the oxidase-like characteristics of natural bio-enzymes, but they also present a clear black band in the test zone. In this work, the synthesized PdNPs promoted a transformation of colorless tetramethylbenzidine (TMB) to a blue oxidation product of TMB, providing a Km value of 0.09 mM for TMB, and revealing the good catalytic performance of the synthesized PdNPs. For both signal generation and amplification, PdNPs effectively replaced natural bio-enzymes as a new labeling tag. Thus, the PdNP-based enzyme-free single-step immunoassays were successfully developed for efficient and sensitive detection of glycocholic acid (GCA). Under optimal conditions, a noticeable linear relationship was identified by the enzyme-linked immunosorbent assay (ELISA) over a range of 8-2390 ng/mL, while the visual limit of detection (vLOD) in the constructed lateral flow immunoassay (LFA) was 10 ng/mL for GCA. The recovery rate in spiked urine samples obtained by the ELISA ranged from 84.2 to 117.9%, which was consistent with the results in LFA. The present work demonstrates the potential of PdNPs as labeling matrices in enzyme-free single-step immunoassays.


Assuntos
Ácido Glicocólico/análise , Imunoensaio/métodos , Nanopartículas Metálicas/química , Paládio/química , Catálise , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Ácido Glicocólico/urina , Humanos , Limite de Detecção
11.
Anal Bioanal Chem ; 413(17): 4459-4469, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137913

RESUMO

In this paper, five fluorescein-labeled dehydroepiandrosterone (DHEA) derivatives (tracers) with different chain lengths between the fluorescein and hapten were synthesized and featured so as to establish a fluorescence polarization immunoassay (FPIA) for DHEA detection in human urine samples with previously prepared polyclonal antibody against DHEA. The outcomes of the structure of tracer on FPIA sensitivity were investigated. Under the optimal condition, the fluorescence polarization value (FP) decreases linearly in DHEA concentration, ranging from 1.6 to 243.3 ng mL-1, with the limit of detection of 1.1 ng mL-1 and IC50 value of 25.1 ng mL-1. Moreover, the developed FPIA was time-saving as it could complete the detection within 3 min. FPIA and commercial enzyme-linked immunosorbent assay kit were both applied to analyze the spiked human urine samples with DHEA. Excellent recoveries (92.1-108.0%) and satisfactory correlation coefficient (R2 = 0.98) were acquired with the two methods, indicating that the developed FPIA was a fast and efficient screening immunoassay with accuracy and sensitivity for DHEA detection in human urine samples. Graphical abstract.


Assuntos
Desidroepiandrosterona/urina , Imunoensaio de Fluorescência por Polarização/métodos , Fluoresceína/química , Imunoensaio de Fluorescência por Polarização/economia , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Fatores de Tempo
12.
Anal Methods ; 13(25): 2823-2829, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075941

RESUMO

Specific and sensitive biomarker detection is significant for the early diagnosis of cancers. Herein, a highly sensitive electrochemical biosensor employing a tetrahedral DNA nanostructure (TDN) probe and multiple signal amplification strategies has been constructed, and successfully applied to microRNA-122 (miR-122) detection. The platform consisted of a TDN probe anchoring on a gold nanoparticle-coated gold electrode and multiple signal amplification procedures combining the electrodeposition of gold nanoparticles, hybridization chain reaction (HCR), and horseradish peroxidase enzymatic catalysis (HPEC). In the presence of the target, the hairpin structure of the helper probe could be opened and trigger the HCR through the hybridization of H1 and H2 probes, and then avidin-HRP was attached on the surface of the gold electrode that can produce an electro-catalytic signal. We used TDN probe as the scaffold to increase the reactivity and multiple signal amplification greatly improve the sensitivity of this biosensor. This biosensor offers an excellent sensitivity (a limit of detection of 0.74 aM) and differentiation ability for single and multiple mismatches. This multiplexing biosensor for trace microRNA detection shows promising applications in the early diagnosis of cancer.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Nanoestruturas , DNA/genética , Técnicas Eletroquímicas , Ouro , Humanos
13.
ACS Appl Mater Interfaces ; 13(18): 21680-21692, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33934598

RESUMO

Herein, a Au-Au/IrO2 nanocomposite with tandem enzyme-mimicking activity was innovatively synthesized, which can show outstanding glucose oxidase (GOx)-like activity and peroxidase-like activity simultaneously under neutral conditions. Moreover, a Au-Au/IrO2@Cu(PABA) reactor was prepared via encapsulation of the Au-Au/IrO2 nanocomposite in a Cu(PABA) metal organic framework. The reactor not only exhibits excellent organic solvent stability, acid resistance, and reusability but also displays better cascade reaction catalytic efficiency (kcat/Km = 148.86 min-1 mM-1) than the natural free enzyme system (GOx/HRP) (kcat/Km = 98.20 min-1 mM-1) and Au-Au/IrO2 nanocomposite (kcat/Km = 135.24 min-1 mM-1). In addition, it is found that the reactor can catalyze glucose or dissolved oxygen to produce active oxygen species (ROS) including HO, 1O2, and O2-· through its enzyme-mimicking activity. Finally, the novel reactor was successfully used in organic dye degradation and antibacterial application. The results show that it can effectively degrade methyl orange, methylene blue, and rhodamine B, which all can reach a degradation rate of nearly 100% after interacting with Au-Au/IrO2@Cu (PABA) for 3.5 h. Furthermore, the reactor also exhibits excellent antibacterial activity, so as to achieve a complete bactericidal effect to Staphylococcus aureus and Escherichia coli at a concentration of 12.5 µg mL-1.


Assuntos
Antibacterianos/farmacologia , Corantes/química , Complexos de Coordenação/química , Enzimas/química , Estruturas Metalorgânicas/química , Metais/química , Catálise , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
14.
Anal Methods ; 13(16): 1919-1924, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33913980

RESUMO

The concentration of glycocholic acid (GCA) in urine and blood is an important biomarker for liver cancer. Monitoring of GCA depends to a large extent on the availability of appropriate analytical techniques. In this work, based on the immobilization of GCA-OVA onto the sensor chip surface, a label-free competitive inhibition immunoassay for the determination of GCA with the surface plasmon resonance (SPR) technique was developed. The proposed SPR immunosensor is simple to prepare, recyclable and exhibits excellent sensitivity to GCA (a linear range of 13.3-119.4 ng mL-1 and a limit of detection (LOD) of 2.5 ng mL-1), which was 14 times lower than that of the traditional immunoassay. Excellent recoveries and correlation between these two methods were observed (R2 = 0.995). Hence, it can be proved that the SPR immunosensor could be used to achieve rapid and sensitive quantitative detection of GCA in real urine samples and meet clinical needs.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ácido Glicocólico , Imunoensaio , Limite de Detecção
15.
Analyst ; 146(8): 2726-2733, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709090

RESUMO

The traditional gold-nanoparticle-based lateral flow immunoassay (LFIA) cannot satisfy the requirements for the sensitive detection of dehydroepiandrosterone (DHEA) in human urine. To enhance the sensitivity of the LFIA, platinum-iridium nanocubes (Pt-Ir NCs) with high catalytic efficiency and stability were synthesized and labelled with polyclonal antibody (pAb) to form a pAb-Pt-Ir probe. For the detection of DHEA, a novel LFIA with Pt-Ir NCs as an optical label and an enhanced LFIA in which the peroxidase-like activity of the Pt-Ir NCs was triggered by the introduction of the chromogenic substrate 3-amino-9-ethyl-carbazole (AEC) were developed and compared with a LFIA with platinum nanocubes (PtNCs) as an optical label. The visual limit of detection was 0.5 ng mL-1 for Pt-Ir-LFIA and 0.05 ng mL-1 for AEC-enhanced Pt-Ir-LFIA, in comparison to 100 ng mL-1 for PtNCs-LFIA and 50 ng mL-1 for AEC-enhanced PtNCs-LFIA. The average recoveries from spiked urine samples ranged from 90.8% to 110.4%, with a coefficient of variation below 12.6%, suggesting the accuracy and reliability of our developed immunoassay. Achieving excellent sensitivity, specificity, and reproducibility, Pt-Ir-LFIA provided a promising platform for monitoring DHEA.


Assuntos
Desidroepiandrosterona , Imunoensaio , Nanopartículas Metálicas , Desidroepiandrosterona/análise , Humanos , Irídio , Limite de Detecção , Reprodutibilidade dos Testes
16.
Anal Methods ; 13(9): 1164-1171, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33599661

RESUMO

Progesterone (P4) belongs to a factor that affects stress response and is a potential carcinogen, and saliva levels are expected to be a standard measurement for clinical diagnosis. In this study, a new type of nanoflower with both recognition functionality and catalytic substrate ability was prepared by copper phosphate, Pt/IrO2 nanocomposites (Pt/IrO2 NPs), streptavidin (SA) and horseradish peroxidase (HRP) via a one-pot co-precipitation strategy. Due to the enhanced catalytic activity and stability of Pt/IrO2@SA@HRP nanoflowers, we developed a powerful and sensitive multiple-catalysis ELISA to monitor progesterone in saliva. Multiple-catalysis ELISA based on a specific antibody and Pt/IrO2@SA@HRP nanoflowers exhibited a linear interval range from 0.217 ng mL-1 to 7.934 ng mL-1. The median inhibitory concentration (IC50) for progesterone is 1.311 ng mL-1 and the limit of detection (LOD = IC10) is 0.076 ng mL-1 in the proposed method. Satisfactory recoveries were in a range of 79.6-107% with an acceptable coefficient of variation (below 10.6%). Results of the multiple-catalysis ELISA and LC-MS/MS had a good coincidence. Our result unraveled that multiple-catalysis ELISA is a potentially serviceable tool for the detection of progesterone in saliva.


Assuntos
Colorimetria , Progesterona , Cromatografia Líquida , Peroxidase do Rábano Silvestre , Irídio , Nanoestruturas , Platina , Saliva , Estreptavidina , Espectrometria de Massas em Tandem
17.
Vaccine ; 39(11): 1609-1620, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33612342

RESUMO

Subunit vaccines derived from tumor antigens play a role in tumor therapy because of their unique advantages. However, because of the weak immunogenicity of peptides in subunit vaccines, it is difficult to trigger an effective cytotoxic T lymphocyte (CTL) response, which is critical for cancer therapy. A requirement for the activation of CTL cells by exogenous antigens is the stimulation of antigen presenting cells (APC) with the help of adjuvants and cross-presentation to T lymphocytes. Standard nonconjugated adjuvant-peptide mixtures do not ensure co-targeting of the antigen and the adjuvant to the same APC, which limits the effects of adjuvants. In this study, a fusion protein consisting of murine granulocyte-macrophage colony stimulating factor (mGM-CSF) fused with CTA2 (A2 subunit of cholera toxin) was generated and assembled with CTB-PSMA624-632 (prostate specific membrane antigen (PSMA) peptide 624-632 fused to CTB) to obtain a cholera toxin-like protein. The chimeric protein retained the biological activity of mGM-CSF and had stronger GM1 binding activity than (CTB-PSMA624-632)5. C57BL/6J mice immunized with the CT-like chimeric protein exhibited delayed tumor growth following challenge with human PSMA-EGFP-expressing RM-1 cells. Experiment results showed that the CT-like chimeric protein could induce the maturation of DC cells and improve CTL responses. Overall, these results indicate that the nasal administration of a CT-like chimeric protein vaccine results in the development of effective immunity against prostate tumor cells and might be useful for future clinical anti-tumoral applications.


Assuntos
Neoplasias da Próstata , Linfócitos T Citotóxicos , Animais , Antígenos de Superfície , Toxina da Cólera , Células Dendríticas , Epitopos , Glutamato Carboxipeptidase II , Humanos , Fator Estimulador de Colônias de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/terapia , Proteínas Recombinantes de Fusão/genética
18.
Adv Mater ; 33(6): e2000688, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32705727

RESUMO

Discontinuously reinforced titanium matrix composites (DRTMCs), as one of the most important metal matrix composites (MMCs), are expected to exhibit high strength, elastic modulus, high-temperature endurability, wear resistance, isotropic property, and formability. Recent innovative research shows that tailoring the reinforcement network distribution totally differently from the conventional homogeneous distribution can not only improve the strengthening effect but also resolve the dilemma of DRTMCs with poor tensile ductility. Based on the network architecture, multiscale architecture, for example, two-scale network and laminate-network microstructure can further inspire superior strength, creep, and oxidation resistance at elevated temperatures. Herein, the most recent developments, which include the design, fabrication, microstructure, high-temperature performance, strengthening mechanisms, and future research opportunities for DRTMCs with multiscale architecture, are captured. In this regard, the service temperature can be increased by 200 °C, and the creep rupture time by 59-fold compared with those of conventional titanium alloys, which can meet the urgent demands of lightweight nickel-based structural materials and potentially replace nickel base superalloys at 600-800 °C to reduce weight by 45%. In fact, multiscale architecture design strategy will also favorably open a new era in the research of extensive metallic materials for improved performances.

19.
Analyst ; 146(1): 338-347, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33159778

RESUMO

As the infection by Helicobacter pylori (H. pylori, HP) remains for a lifetime and may induce diseases such as gastric cancer, it is vital to detect and diagnose it. A new non-invasive indirect enzyme-linked immunosorbent assay (iELISA) method based on nano-flowers (NFs) is very advantageous for the sensitive detection of HP. Furthermore, the established iELISA method based on the organic-inorganic bifunctional hybrid nano-flowers including rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP@Cu2+ NFs) showed linearity with HP at a concentration of 0-105 CFU mL-1 (R2 = 0.9997). Moreover, the limit of detection (LOD) reached 50 CFU mL-1, and not only was the detection sensitivity 20 times higher than that based on rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP) but also the stability of R-HP-Ab-HRP in NFs was improved. In addition, the OD450 nm value was still linearly related to the concentration of HP at a range of 0-105 CFU mL-1 (R2 = 0.9952) with a LOD of 50 CFU mL-1 in an artificial saliva system. This study provided a sensitive, low-cost and convenient method for the non-invasive detection of HP.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Animais , Anticorpos , Ensaio de Imunoadsorção Enzimática , Limite de Detecção , Coelhos
20.
Mikrochim Acta ; 187(12): 675, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33241461

RESUMO

A highly sensitive colorimetric sensing strategy based on enzyme@metal-organic framework (GAA@Cu-MOF) and IrO2/MnO2 nanocomposite was exploited innovatively for screening of α-glucosidase (GAA) inhibitors. IrO2/MnO2 nanocomposite exhibits excellent oxidase-mimicking activity which can directly catalyze the oxidation of 3,3,5,5,-tetramethylbenzidine (TMB) into a blue product with an absorption maximum at 652 nm. And GAA@Cu-MOF can decompose L-ascorbic acid-2-O-α-D-glucopyranosyl (AAG) to ascorbic acid (AA). The produced AA can destroy the IrO2/MnO2 nanocomposite and reduce its oxidase-like activity. However, the generation of AA is restricted when GAA inhibitors are added to the system, which allows the oxidase-like activity of the IrO2/MnO2 nanocomposite to be maintained. In view of this, a method for screening of GAA inhibitors was developed. In addition to enhancing the stability of GAA, the method can also effectively avoid the potential interference of H2O2 in the screening process of GAA inhibitors, which helps to improve the sensitivity of the method. Therefore, highly sensitive determination for acarbose and ascorbic acid are achieved with detection limits of 6.27 nM and 1.23 µM, respectively. The proposed method was successfully applied to screen potential GAA inhibitors from oleanolic acid derivatives. Graphical abstract.


Assuntos
Colorimetria/métodos , Inibidores de Glicosídeo Hidrolases/análise , Estruturas Metalorgânicas/química , Nanocompostos/química , alfa-Glucosidases/metabolismo , Acarbose/análise , Ácido Ascórbico/análise , Catálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Irídio/química , Limite de Detecção , Compostos de Manganês/química , Óxidos/química , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...