Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Pathol ; 262(4): 427-440, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38229567

RESUMO

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cerebelares , Anemia de Fanconi , Ferroptose , Meduloblastoma , Camundongos , Animais , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ferroptose/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Linhagem Celular Tumoral , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-37864708

RESUMO

Detecting low-abundance mutations is of particular interest in the fields of biology and medical science. However, most currently available molecular assays have limited sensitivity for the detection of low-abundance mutations. Here, we established a platform for detecting low-level DNA mutations with high sensitivity and accuracy by combining enhanced-ice-COLD-PCR (E-ice-COLD-PCR) and pyrosequencing with di-base addition (PDBA). The PDBA assay was performed by selectively adding one di-base (AG, CT, AC, GT, AT, or GC) instead of one base (A, T, C, or G) into the reaction at a time during sequencing primer extension and thus enabling to increase the sequencing intensity. A specific E-ice-COLD-PCR/PDBA assay was developed for the detection of the most frequent BRAF V600E mutation to verify the feasibility of our method. E-ice-COLD-PCR/PDBA assay permitted the reliable detection of down to 0.007% of mutant alleles in a wild-type background. Furthermore, it required only a small amount of starting material (20 pg) to sensitively detect and identify low-abundance mutations, thus increasing the screening capabilities in limited DNA material. The E-ice-COLD-PCR/PDBA assay was applied in the current study to clinical formalin-fixed paraffin-embedded (FFPE) and plasma samples, and it enabled the detection of BRAF V600E mutations in samples that appeared as a wild type using PCR/conventional pyrosequencing (CP) and E-ice-COLD-PCR/CP. E-ice-COLD-PCR/PDBA assay is a rapid, cost-effective, and highly sensitive method that could improve the detection of low-abundance mutations in routine clinical use.

3.
Front Immunol ; 14: 1162439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614233

RESUMO

Allostimulated CD8+ T cells (aCD8+ T cells), as the main mediators of acute liver rejection (ARJ), are hyposensitive to apoptosis due to the inactivation of death receptor FAS-mediated pathways and fail to allow tolerance induction, eventually leading to acute graft rejection. Although tacrolimus (FK506), the most commonly used immunosuppressant (IS) in the clinic, allows tolerance induction, its use is limited because its target immune cells are unknown and it is associated with increased incidences of malignancy, infection, and nephrotoxicity, which substantially impact long-term liver transplantation (LTx) outcomes. The dark agouti (DA)-to-Lewis rat LTx model is a well-known ARJ model and was hence chosen for the present study. We show that both hepatocyte growth factor (HGF) (cHGF, containing the main form of promoting HGF production) and recombinant HGF (h-rHGF) exert immunoregulatory effects mainly on allogeneic aCD8+ T cell suppression through FAS-mediated apoptotic pathways by inhibiting cMet to FAS antagonism and Fas trimerization, leading to acute tolerance induction. We also showed that such inhibition can be abrogated by treatment with neutralizing antibodies against cMet (HGF-only receptor). In contrast, we did not observe these effects in rats treated with FK506. However, we observed that the effect of anti-rejection by FK506 was mainly on allostimulated CD4+ T cell (aCD4+ T cell) suppression and regulatory T cell (Treg) promotion, in contrast to the mechanism of HGF. In addition, the protective mechanism of HGF in FK506-mediated nephrotoxicity was addressed. Therefore, HGF as a tolerance inducer, whether used in combination with FK506 or as monotherapy, may have good clinical value. Additional roles of these T-cell subpopulations in other biological systems and studies in these fields will also be meaningful.


Assuntos
Fator de Crescimento de Hepatócito , Tacrolimo , Animais , Ratos , Aloenxertos , Linfócitos T CD8-Positivos , Fígado , Ratos Endogâmicos Lew , Tacrolimo/farmacologia
4.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963400

RESUMO

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Interleucina-8 , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-8/metabolismo , Linfócitos T , Microambiente Tumoral
5.
Cancer Commun (Lond) ; 42(9): 868-886, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848447

RESUMO

BACKGROUND: Elucidation of the post-transcriptional modification has led to novel strategies to treat intractable tumors, especially glioblastoma (GBM). The ubiquitin-proteasome system (UPS) mediates a reversible, stringent and stepwise post-translational modification which is closely associated with malignant processes of GBM. To this end, developing novel therapeutic approaches to target the UPS may contribute to the treatment of this disease. This study aimed to screen the vital and aberrantly regulated component of the UPS in GBM. Based on the molecular identification, functional characterization, and mechanism investigation, we sought to elaborate a novel therapeutic strategy to target this vital factor to combat GBM. METHODS: We combined glioma datasets and human patient samples to screen and identify aberrantly regulated E3 ubiquitin ligase. Multidimensional database analysis and molecular and functional experiments in vivo and in vitro were used to evaluate the roles of HECT, UBA and WWE domain-containing E3 ubiquitin ligase 1 (HUWE1) in GBM. dCas9 synergistic activation mediator system and recombinant adeno-associated virus (rAAV) were used to endogenously overexpress full-length HUWE1 in vitro and in glioma orthotopic xenografts. RESULTS: Low expression of HUWE1 was closely associated with worse prognosis of GBM patients. The ubiquitination and subsequent degradation of N-Myc mediated by HUWE1, leading to the inactivation of downstream Delta-like 1 (DLL1)-NOTCH1 signaling pathways, inhibited the proliferation, invasion, and migration of GBM cells in vitro and in vivo. A rAAV dual-vector system for packaging and delivery of dCas9-VP64 was used to augment endogenous HUWE1 expression in vivo and showed an antitumor activity in glioma orthotopic xenografts. CONCLUSIONS: The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress GBM progression. Antitumor activity of rAAV dual-vector delivering dCas9-HUWE1 system uncovers a promising therapeutic strategy for GBM.


Assuntos
Glioblastoma , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Glioblastoma/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Adv Sci (Weinh) ; 9(27): e2105938, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882624

RESUMO

Autophagy is a highly conserved process that is vital for tumor progression and treatment response. Although autophagy is proposed to maintain the stemness phenotype in adult diffuse glioma, the molecular basis of the link between autophagy and stemness is poorly understood, which makes it impossible to effectively screen for the population that will benefit from autophagy-targeted treatment. Here, ATG9B as essential for self-renewal capacity and tumor-propagation potential is identified. Notably, ASCL2 transcriptionally regulates the expression of ATG9B to maintain stemness properties. The ASCL2-ATG9B axis is an independent prognostic biomarker and indicator of autophagic activity. Furthermore, the highly effective blood-brain barrier (BBB)-permeable autophagy inhibitor ROC-325, which can significantly inhibit the progression of ASCL2-ATG9B axisHigh gliomas as a single agent is investigated. These data demonstrate that a new ASCL2-ATG9B signaling axis is crucial for maintaining the stemness phenotype and tumor progression, revealing a potential autophagy inhibition strategy for adult diffuse gliomas.


Assuntos
Autofagia , Glioma , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Glioma/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fenótipo
7.
Oncogene ; 41(30): 3791-3803, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764885

RESUMO

Glioblastoma is a lethal primary brain tumor with abundant immune-suppressive glioblastoma-associated macrophage (GAM) infiltration. Skewing immune suppressive GAMs towards an immune-activating phenotype represents a promising immunotherapeutic strategy against glioblastoma. Herein, we reported that genetic deletion of miRNA-processing enzyme Dicer in macrophages inhibited the growth of GL261 murine glioblastoma xenografts and prolonged survival of tumor-bearing mice. Single cell RNA sequencing (scRNA-seq) of the tumor-infiltrating immune cells revealed that Dicer deletion in macrophages reduced the proportion of cell-cycling GAM cluster and reprogramed the remaining GAMs towards a proinflammatory activation state (enhanced phagocytotic and IFN-producing signature). Dicer-deficient GAMs showed reduced level of cyclin-dependent kinases (CDK1 and CDK2) and increased expression of CDK inhibitor p27 Kip1, thus manifesting impaired proliferation. Dicer knockout enhanced phagocytotic activity of GAMs to eliminate GL261 tumor cells. Increased proinflammatory GAM clusters in macrophage Dicer-deficient mice actively interacted with tumor-infiltrating T cells and NK cells through TNF paracrine signaling to create a pro-inflammatory immune microenvironment for tumor cell elimination. Our work identifies the role of Dicer deletion in macrophages in generating an immune-activating microenvironment, which could be further developed as a potential immunotherapeutic strategy against glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Glioblastoma/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Macrófagos/metabolismo , Camundongos , Linfócitos T/metabolismo , Microambiente Tumoral/genética
8.
Clin Exp Metastasis ; 39(4): 691-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661947

RESUMO

Plexin-domain containing 2 (PLXDC2) has been reported as an oncoprotein in several human malignancies. However, its expression and roles in gastric cancer remain largely unclear. In this study, we found that PLXDC2 was highly expressed in gastric cancer tissues, and the expression levels were positively correlated with clinicopathological features, but negatively with the patients' outcome. Cox regression analysis identified PLXDC2 as an independent prognostic indicator for the patients. Knockdown of PLXDC2 markedly suppressed the in vitro invasion and in vivo metastasis of gastric cancer cells, while overexpression of PLXDC2 resulted in opposite effects. Mechanistically, PLXDC2 enhanced the level of phosphorylated Cortactin (p-Cortactin) by physically interacting with protein tyrosine phosphatase 1B (PTP1B), an important dephosphorylase, to prevent its dephosphorylating of p-Cortactin, thereby promoting the formation of invadopodia. Collectively, our results indicate that PLXDC2 contributes to the invasion and metastasis of gastric cancer by inhibiting PTP1B to facilitate the invadopodium formation, and may serve as a potential prognostic biomarker and a therapeutic target for this disease.


Assuntos
Podossomos , Neoplasias Gástricas , Linhagem Celular Tumoral , Cortactina/genética , Cortactina/metabolismo , Humanos , Invasividade Neoplásica , Monoéster Fosfórico Hidrolases/metabolismo , Podossomos/metabolismo , Podossomos/patologia , Receptores de Superfície Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
9.
Signal Transduct Target Ther ; 7(1): 72, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35273141

RESUMO

Medulloblastoma (MB) is one of the most common childhood malignant brain tumors (WHO grade IV), traditionally divided into WNT, SHH, Group 3, and Group 4 subgroups based on the transcription profiles, somatic DNA alterations, and clinical outcomes. Unlike WNT and SHH subgroup MBs, Group 3 and Group 4 MBs have similar transcriptomes and lack clearly specific drivers and targeted therapeutic options. The recently revised WHO Classification of CNS Tumors has assigned Group 3 and 4 to a provisional non-WNT/SHH entity. In the present study, we demonstrate that Kir2.1, an inwardly-rectifying potassium channel, is highly expressed in non-WNT/SHH MBs, which promotes tumor cell invasion and metastasis by recruiting Adam10 to enhance S2 cleavage of Notch2 thereby activating the Notch2 signaling pathway. Disruption of the Notch2 pathway markedly inhibited the growth and metastasis of Kir2.1-overexpressing MB cell-derived xenograft tumors in mice. Moreover, Kir2.1high/nuclear N2ICDhigh MBs are associated with the significantly shorter lifespan of the patients. Thus, Kir2.1high/nuclear N2ICDhigh can be used as a biomarker to define a novel subtype of non-WNT/SHH MBs. Our findings are important for the modification of treatment regimens and the development of novel-targeted therapies for non-WNT/SHH MBs.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Criança , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização , Transdução de Sinais
10.
Signal Transduct Target Ther ; 7(1): 33, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105853

RESUMO

Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor EphA2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/genética , Fator de Crescimento Derivado de Plaquetas/genética , Prognóstico , Receptor EphA2/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
11.
Brain Tumor Pathol ; 38(3): 189-200, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34231121

RESUMO

Current conventional treatment strategies for glioblastoma (GBM) have limited efficacy due to the rapid development of resistance to temozolomide (TMZ). It is particularly urgent to develop novel therapeutic strategies that can overcome TMZ resistance and provide patients with better prognoses. Here, a TMZ-resistant GBM cell strain and a mouse model of TMZ resistance are established as valuable tools to explore novel therapeutic strategies against TMZ resistance. Experimentally, p38MAPK inhibitor reduces the accumulation of F4/80+/CD11b+ macrophages/microglia in glioma and prolongs the survivals of glioma-bearing mice. Glioma-associated macrophages/microglia have a significanct expression of PD-L1. p38MAPK inhibitor in combination with PD-L1 antibody can effectively prolongs the survivals of TMZ-resistant GBM-bearing hosts, and differentially reduces the accumulation of circulating monocytes-derived tumor-associated macrophages and PD-L1 abundances of resident glioma-associated microglia. This combination therapy could be a treatment option for patients at the recurrence or chronic TMZ maintenance stages. A clinical study to confirm the safety and effectiveness of this combination therapy is warranted.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioblastoma/patologia , Microglia/metabolismo , Temozolomida/farmacologia , Macrófagos Associados a Tumor/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Antineoplásicos Alquilantes/uso terapêutico , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Camundongos , Taxa de Sobrevida
12.
Gastric Cancer ; 24(2): 402-416, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33159601

RESUMO

BACKGROUND: Aberrant activation of Wnt/ß-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/ß-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS: The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/ß-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of ß-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS: Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with ß-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase ß-Trcp1 for ß-catenin binding, thereby decreasing ß-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner ß-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with ß-catenin expression levels. CONCLUSIONS: Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/ß-catenin signaling via SHARPIN-mediated stabilization of ß-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive ß-catenin signaling in a subset of human gastric cancers.


Assuntos
Carcinogênese/genética , Neoplasias Gástricas/genética , Ubiquitinação/genética , Ubiquitinas/genética , beta Catenina/genética , Humanos , Via de Sinalização Wnt/genética
13.
Brain Res ; 1748: 147082, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866544

RESUMO

Neovascularization is a histological feature of glioma, especially of glioblastoma (GBM), being associated with tumor invasiveness and poor prognosis. However, current anti-angiogenic therapies targeting vascular endothelial cells (ECs), has exhibited poor efficacy in some GBM cases. This may be at least partially attributed to the potential of glioblastoma cells to construct blood supply chain via vasculogenic mimicry or endothelial differentiation. This study aims to explore differences in vasculogenic activity and sensitivity to angiogenic stimulants between normal human ECs and glioma cells of different grades. We found that grade IV U87 GBM cells showed highly inducible vasculogenic activity either in the orthotopic xenograft model or under in vitro angiogenic stimulants as compared with grade II CHG5 glioma cells. The hypoxia mimetic more strongly induced in vitro vasculogenic capacity and endothelial marker expression of U87 GBM cells than the stimulation with multiple proangiogenic growth factors (vascular endothelial growth factor, basic fibroblast growth factor and epidermal growth factor). In contrast, proangiogenic effect of hypoxia on human umbilical vein endothelial cells (HUVECs) was weaker than on U87 GBM cells. In addition, it was also observed that the in vitro vasculogenic process of U87 cells started later but lasted longer than that of HUVECs. These results demonstrate that when compared with normal ECs, high-grade glioma cells basically possess weaker vasculogenic activity, but exhibit higher sensitivity and longer-lasting response to angiogenic stimulants, especially to hypoxia. This may be helpful to develop novel anti-angiogenic strategies targeting both vascular ECs and vasculogenic glioma cells.


Assuntos
Indutores da Angiogênese/farmacologia , Neoplasias Encefálicas/patologia , Encéfalo/efeitos dos fármacos , Glioma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos
14.
Hum Pathol ; 97: 68-79, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926212

RESUMO

Immunotherapies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1) axis have been emerging as a promising therapeutic strategy to treat lung cancer. PD-1 is preferentially expressed by activated T lymphocytes; but whether/how its expression by tumor-associated macrophages (TAMs) in lung adenocarcinoma remains elusive. Herein, we investigate the frequency of PD-1 expression on TAMs in mouse allografts by flow cytometry analysis and evaluate the spatial distribution and clinicopathological significance of PD-1+ TAMs in 213 cases of human lung adenocarcinoma specimens by immunohistochemical staining. We find the expression of PD-1 by both mouse and human TAMs. Mouse PD-1+ TAMs possess unique transcriptional profile as compared to PD-1- TAMs. Furthermore, PD-1 is preferentially expressed by CD163+ TAMs in the tumor stroma than those in the tumor islets of lung adenocarcinoma. Stromal PD-1+ TAM infiltration is an independent predictor of reduced survival as determined by univariate (P < .001) and multivariate (P = .023) analysis. Moreover, patients with high stromal PD-1+ TAMs but low tumor cell PD-L1 expression have the shortest survival (P = .0001). Our study demonstrates that PD-1+ TAMs have unique gene expression characteristics and PD-1+ TAMs in the tumor stroma is a potential prognostic factor in lung adenocarcinoma, suggesting that a better understanding of PD-1+ TAMs will be beneficial for immunotherapy of lung adenocarcinoma patients.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Lewis/imunologia , Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Receptor de Morte Celular Programada 1/análise , Células Estromais/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Receptor de Morte Celular Programada 1/genética , Células Estromais/patologia
15.
Lab Invest ; 100(6): 812-823, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31949244

RESUMO

Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Invasividade Neoplásica/patologia , Zixina , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Camundongos , Camundongos Endogâmicos NOD , Prognóstico , Estatmina/análise , Estatmina/genética , Estatmina/metabolismo , Zixina/análise , Zixina/genética , Zixina/metabolismo
16.
Lab Invest ; 100(4): 619-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31748682

RESUMO

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Assuntos
Quimiocina CCL8/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Invasividade Neoplásica/fisiopatologia , Células-Tronco Neoplásicas/citologia , Células Tumorais Cultivadas
17.
Biotechniques ; 68(3): 130-137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870167

RESUMO

Considering the importance of gene expression studies for understanding the biology of glioma stem cells (GSCs), we aimed to identify the reliable reference genes in GSCs that were derived from the glioma cell lines T98G, LN229, 090116 and 091214. Quantitative real-time reverse-transcription PCR was employed using 11 reference genes identified through a PubMed literature search, and the assessment of stability through the geNorm, Normfinder and coefficient of variation methods was performed to select suitable reference genes. We found that HPRT1 and RPL13A were the most suitable reference genes, and validated the geometric mean of these genes to normalize the expression of stemness genes by GSCs. Therefore, it is necessary to select novel cell-specific reference genes with greater expression stability for gene expression studies in GSCs.


Assuntos
Genes Neoplásicos/genética , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Humanos , Padrões de Referência
18.
Stem Cell Res Ther ; 10(1): 330, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747975

RESUMO

BACKGROUND: The existing cell surface markers used for sorting glioma stem cells (GSCs) have obvious limitations, such as vulnerability to the enzymatic digestion and time-consuming labeling procedure. Reduced nicotinamide adenine dinucleotide (NADH) as a cellular metabolite with property of autofluorescence has the potential to be used as a new biomarker for sorting GSCs. METHODS: A method for sorting GSCs was established according to the properties of the autofluorescence of NADH. Then, the NADHhigh and NADHlow subpopulations were sorted. The stem-like properties of the subpopulations were evaluated by qRT-PCR, western blot analyses, limiting dilution assay, cell viability assay, bioluminescence imaging, and immunofluorescence analysis in vitro and in vivo. The relationship between CD133+/CD15+ cells and NADHhigh subpopulation was also assessed. RESULTS: NADHhigh cells expressed higher stem-related genes, formed more tumor spheres, and harbored stronger pluripotency in vitro and higher tumorigenicity in vivo, compared to NADHlow subpopulation. NADHhigh glioma cells had the similar stemness with CD133+ or CD15+ GSCs, but the three subpopulations less overlaid each other. Also, NADHhigh glioma cells were more invasive and more resistant to chemotherapeutic drug temozolomide (TMZ) than NADHlow cells. In addition, the autofluorescence of NADH might be an appropriate marker to sort cancer stem cells (CSCs) in other cancer types, such as breast and colon cancer. CONCLUSION: Our findings demonstrate that intracellular autofluorescence of NADH is a non-labeling, sensitive maker for isolating GSCs, even for other CSCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Citometria de Fluxo , Glioma/patologia , NAD/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Antígenos CD/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Fluorescência , Glioma/tratamento farmacológico , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
19.
Cancer Med ; 8(17): 7207-7218, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605439

RESUMO

AIMS: The aim of this study was to investigate the tumor microenvironment immune types (TMIT) based on tumor cell programmed cell death ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) distribution and whether distinct TMIT subtypes (TMIT I, PD-L1high /TILhigh ; TMIT II, PD-L1low /TILlow ; TMIT III, PD-L1high /TILlow ; and TMIT IV, PD-L1low /TILhigh ) differentially affect clinical outcomes of patients with lung adenocarcinoma (LAC) and squamous cell carcinoma (SCC). METHODS AND RESULTS: Immunohistochemistry (IHC) was applied to evaluate the expression of PD-L1 and the spatial distribution of programmed cell death 1 (PD-1) and CD8 TILs on the surgically resected specimens from 205 cases of LAC and 149 cases of SCC. PD-1 and CD8 TILs were more frequently distributed in SCC than those in LAC, regardless of their infiltrating in the tumor islets or stroma. The density of TILs was a poor prognostic factor in LAC but a favorable one in SCC. PD-L1 levels and its clinical prognostic significance differed in LAC vs SCC. LAC patients with TMIT III and SCC patients with TMIT I had the longest survival, respectively (P = .0197 and .0049). Moreover, TMIT stratification based on tumor cell PD-L1 expression and stromal CD8+ TILs could be considered as an independent prognostic factor of SCC patients' survival as determined by both univariate and multivariate analysis. CONCLUSION: Our study indicates that different type of TMIT provides its specific microenvironment with diverse impact on survival of LAC and SCC patients and highlights the importance of the integrative assessment of PD-L1 status and TILs' spatial distribution to predict patients' prognosis.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Carcinoma de Células Escamosas/imunologia , Neoplasias Pulmonares/imunologia , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Estimativa de Kaplan-Meier , Pulmão/imunologia , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Pneumonectomia , Prognóstico , Estudos Retrospectivos , Análise Espacial
20.
Biosens Bioelectron ; 143: 111614, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470171

RESUMO

An ultrasensitive photoelectrochemical (PEC) bioassay for determination of microRNA was proposed based on an integrative photoactive heterojunction nanomaterial to provide the basis of excellent PEC responses and an efficient redox cycling amplification system to improve the detection performances. To establish the bioassay system, the biosensor was firstly modified with Bi2WO6@Bi2S3 and alkaline phosphatase (ALP). The detection solution was composed of ascorbic acid phosphate (AAP) and ferrocenecarboxylic acid (FcA), where ALP converted AAP into ascorbic acid (AA) to trigger a process of redox cycling amplification by reducing FcA+ to FcA, resulting in enhanced photocurrent responses of Bi2WO6@Bi2S3. In the presence of microRNA 21, it could trigger a hybridization chain reaction via the special designed hairpin DNA to produce a long repeated DNA sequences to inhibit ALP activity. Thus the reduced ALP activity and consequently decreased photocurrent signal could be obtained for detection of microRNA 21. As expected, this bioassay system performed the satisfactory performances for the ultrasensitive detection of microRNA 21 in the range from 1 fM to 1 nM with an experimental detection limit of 0.26 fM and acceptable practical applicability. Collectively, an efficient PEC bioassay for microRNA 21 is established and this strategy can be expanded to detect other microRNAs, even other molecules in cells.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs/isolamento & purificação , Humanos , Nanopartículas Metálicas/química , MicroRNAs/química , Nanoestruturas/química , Hibridização de Ácido Nucleico , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...