Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255492

RESUMO

As the key component of a five-axis CNC planer-type milling machine, the integral mechanical property of the A/C swing angle milling head directly affects the machining accuracy and stability of the milling machine. Taking the mechanical A/C swing-angle milling head of a five-axis numerical-control gantry milling machine as the research object, the stress deformation characteristics and natural frequency of the swing-angle milling head under actual working conditions were studied using finite-element analysis. Based on the analytical results, it was determined that the cardan frame, with its large mass proportion and strong rigidity of the whole milling head, is the object to be optimized. The topological optimization of the cardan frame, in which achieving the minimum flexibility was the optimization objective, was carried out to determine the quality reduction area. By comparing the simulation results of the cardan frames of three different rib plate structures, it was shown that the cardan frame performance of the ten-type rib plate structure was optimal. The analytical results showed that, when the cardan frame met the design requirements for stiffness and strength, the mass after optimization was reduced by 13.67% compared with the mass before optimization, the first-order natural frequency was increased by 7.9%, and the maximum response amplitude was reduced in all directions to avoid resonance, which was beneficial to the improvement of the dynamic characteristics of the whole machine. At the same time, the rationality and effectiveness of the lightweight design method of the cardan frame were verified, which has strong engineering practicality. The research results provide an important theoretical basis for the optimization of other machine tool gimbals and have important practical significance and application value.

2.
Materials (Basel) ; 14(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361338

RESUMO

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc = 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.

3.
Materials (Basel) ; 13(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957520

RESUMO

In this study, we aimed to process the biomimetic function surface by designing a prototype for modeling the pits on a dung beetle body and the abdomen of a desert viper, and by using high speed milling and controlling the ratio of row spacing to feed rate. Firstly, we conducted three-dimensional parametric modeling and static analysis of the bionic functional surface using 3D modeling software UGNX (12.0, SIEMENS AG, Munich, Germany) and finite element analysis software ABAQUS (2018, Dassault, Providence, RI, USA). Then, the analysis results were imported into the fatigue life analysis software nCode (2018, HBM United Kingdom Ltd., South Yorkshire, UK) to simulate the fatigue characteristics of different bionic pit morphology models. Per the simulated tensile fatigue testing machine, the result shows that the minimum fatigue life value of the quadrilateral pit surface of the simulated dung beetle is one and four times higher than the hexagonal pit morphology and the irregular pit morphology, respectively, whereas the maximum fatigue damage is lower by one and five orders of magnitude, respectively. The quadrilateral pit surface on the biomimetic dung beetle body has better fatigue resistance, which can considerably improve the fatigue damage distribution state and the fatigue life of hardened steel die surfaces. The influential regulation of milling parameters on fatigue performance was studied and the results show that the fatigue resistance of the model is optimal when milling parameters are: row spacing of 0.4 mm, loading space of 0.2 mm, and milling depth of 0.3 mm. The quadrilateral dimensions formed by milling are highly similar to those of a dung beetle body proving that a certain reduction in milling process depth can increase the structural fatigue resistance. From the perspective of fatigue crack growth analysis, the quadrilateral dimples on the surface of the dung beetle improve fatigue crack growth inhibition and fatigue resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...