Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(1): 105824, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632064

RESUMO

MXene, 2D material, can be synthesized as single flake with 1 nm thickness by using phase change material, polymer and graphene oxide. Meanwhile, the MXene and its composite derivative materials have been applied widely in electro-to-thermal conversion, photo-to-thermal conversion, thermal energy storage, and 3D printing ink aspects. Furthermore, the forward-looking utilization of the MXene nanomaterials in hydrogen energy storage, radio frequency field application, CO2 capture and remediation of environmental pollution, is explored. This article reveals that the efficiencies of the photo-to-thermal and electro-to-thermal energy conversions with the MXene nanomaterials could reach about 80-90%. In parallel, it is demonstrated that the MXene printed ink has the excellent rheological property and high viscosity and stability of liquid, which contribute to arranging the multi-dimensional architectures with functional materials and controlling the flow rate of the MXene ink in the range of 0.03-0.15 mL/min for speedily printing and various printing structures.

2.
Renew Sustain Energy Rev ; 135: 110254, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34234621

RESUMO

Solar photovoltaic/thermal technology has been widely utilized in building service area as it generates thermal and electrical energy simultaneously. In order to improve the photovoltaic/thermal system performance, nanofluids are employed as the thermal fluid owing to its high thermal conductivity. This paper summarizes the state-of-the-art of the photovoltaic/thermal systems with different loop-pipe configurations (including heat pipe, vacuum tube, roll-bond, heat exchanger, micro-channel, U-tube, triangular tube and heat mat) and nanoparticles (including Copper-oxide, Aluminium-oxide, Silicon carbide, Tribute, Magnesium-oxide, Cerium-oxide, Tungsten-oxide, Titanium-oxide, Zirconia-oxide, Graphene and Carbon). The influences of the critical parameters like nanoparticle optical and thermal properties, volume fraction, mass flux and mass flow rates, on the photovoltaic/thermal system performance are for the optimum energy efficiency. Furthermore, the structure and manufacturing of solar cells, micro-thermometry analysis of solar cells and recycling process of photovoltaic panels are explored. At the end, the standpoints, recommendations and potential future development on the solar photovoltaic/thermal system with various configurations and nanofluids are deliberated to overcome the barriers and challenges for the practical application. This study demonstrates that the advanced photovoltaic/thermal configuration could improve the system energy efficiency approximately 15%-30% in comparison with the conventional type whereas the nanofluid is able to boost the efficiency around 10%-20% compared to that with traditional working fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...