Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173080, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735320

RESUMO

In light of the pressing need to reduce carbon emissions, the biomass power generation industry has gained significant attention and has increasingly become a crucial focus in China. However, there are still considerable gaps in the historical background, status, and prospects of biomass power generation. Herein, the historical and current status of biomass power generation in China are systematically reviewed, with a particular emphasis on supportive policies, environmental impacts, and future projections. By 2022, the newly installed capacity for biomass power generation reached 3.34 MW with a total installed capacity of 41 MW. The power produced from biomass power generation is 182.4 billion kWh in China. The total installed capacity and generated power in 2022 were 1652 and 1139 folds higher than in 2006 when the first biomass generation plant was established. However, disparities in the distribution of biomass resources and power generation were observed. Key drivers of the industry development include tax, finance, and subsidy policies. Under the implementation of the 14th Five-Year Plan for renewable energy development and the goal of carbon neutrality, biomass power generation may achieve great success through more targeted policy support and advanced technologies that reduce air pollutant emissions. If combined with Bioenergy with Carbon Capture and Storage (BECCS) technology, biomass power generation will make its contribution to carbon neutrality in China.


Assuntos
Biomassa , China , Carbono/análise , Centrais Elétricas , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Energia Renovável
2.
Small ; 19(38): e2303228, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194983

RESUMO

High actuation performance of a moisture actuator highly depends on the presence of a large property difference between the two layers, which may cause interfacial delamination. Improving interfacial adhesion strength while increasing the difference between the layers is a challenge. In this study, a moisture-driven tri-layer actuator with a Yin-Yang-interface (YYI) design is investigated in which a moisture-responsive polyacrylamide (PAM) hydrogel layer (Yang) is combined with a moisture-inert polyethylene terephthalate (PET) layer (Yin) using an interfacial poly(2-ethylhexyl acrylate) (PEA) adhesion layer. Fast and large reversible bending, oscillation, and programmable morphing motions in response to moisture are realized. The response time, bending curvature, and response speed normalized by thickness are among the best compared with those of previously reported moisture-driven actuators. The excellent actuation performance of the actuator has potential multifunctional applications in moisture-controlled switches, mechanical grippers, and crawling and jumping motions. The Yin-Yang-interface design proposed in this work provides a new design strategy for high-performance intelligent materials and devices.

3.
J Funct Biomater ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37103309

RESUMO

It has been confirmed that skeletal muscle cells have the capability to receive foreign plasmid DNA (pDNA) and express functional proteins. This provides a promisingly applicable strategy for safe, convenient, and economical gene therapy. However, intramuscular pDNA delivery efficiency was not high enough for most therapeutic purposes. Some non-viral biomaterials, especially several amphiphilic triblock copolymers, have been shown to significantly improve intramuscular gene delivery efficiency, but the detailed process and mechanism are still not well understood. In this study, the molecular dynamics simulation method was applied to investigate the structure and energy changes of the material molecules, the cell membrane, and the DNA molecules at the atomic and molecular levels. From the results, the interaction process and mechanism of the material molecules with the cell membrane were revealed, and more importantly, the simulation results almost completely matched the previous experimental results. This study may help us design and optimize better intramuscular gene delivery materials for clinical applications.

4.
Pharmaceutics ; 14(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36365246

RESUMO

Since Jon A. Wolff found skeletal muscle cells being able to express foreign genes and Russell J. Mumper increased the gene transfection efficiency into the myocytes by adding polymers, skeletal muscles have become a potential gene delivery and expression target. Different methods have been developing to deliver transgene into skeletal muscles. Among them, viral vectors may achieve potent gene delivery efficiency. However, the potential for triggering biosafety risks limited their clinical applications. Therefore, non-viral biomaterial-mediated methods with reliable biocompatibility are promising tools for intramuscular gene delivery in situ. In recent years, a series of advanced non-viral gene delivery materials and related methods have been reported, such as polymers, liposomes, cell penetrating peptides, as well as physical delivery methods. In this review, we summarized the research progresses and challenges in non-viral intramuscular gene delivery materials and related methods, focusing on the achievements and future directions of polymers.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36231863

RESUMO

Modification of aluminosilicate minerals using a R4N+-bearing organic modifier, through the formation of covalent bonds, is an applicable way to eliminate the modifier release and to maintain the ability to remove cationic pollutants. In this study, trimethyl [3-(trimethoxysilyl) propyl] ammonium chloride (TM) and/or dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMO) were used to graft three aluminosilicate minerals, including calcined kaolinite (Kaol), montmorillonite (Mt), and zeolite (Zeol), and the obtained composites were deployed to assess their performance in regard to ammonium (NH4+) and nitrate (NO3-) adsorption. Grafting of TM and/or DMO had little influence on the crystal structures of Kaol and Zeol, but it increased the interlayer distance of Mt due to the intercalation. Compared to Kaol and Zeol, Mt had a substantially greater grafting concentration of organosilane. For Mt, the highest amount of loaded organosilane was observed when TM and DMO were used simultaneously, whereas for Kaol and Zeol, this occurred when only DMO was employed. 29Si-NMR spectra revealed that TM and/or DMO were covalently bonded on Mt. As opposed to NO3-, the amount of adsorbed NH4+ was reduced after TM and/or DMO grafting while having little effect on the adsorption rate. For the grafted Kaol and Zeol, the adsorption of NH4+ and NO3- was non-interfering. This is different from the grafted Mt where NH4+ uptake was aided by the presence of NO3-. The higher concentration of DMO accounted for the larger NO3- uptake, which was accompanied by improved affinity. The results provide a reference for grafting aluminosilicate minerals and designing efficient adsorbents for the co-adsorption of NH4+ and NO3-.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...