Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 17(1): 169-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36704625

RESUMO

Patients with complete spinal cord injury have a complete loss of motor and sensory functions below the injury plane, leading to a complete loss of function of the nerve pathway in the injured area. Improving the microenvironment in the injured area of patients with spinal cord injury, promoting axon regeneration of the nerve cells is challenging research fields. The brain-computer interface rehabilitation system is different from the other rehabilitation techniques. It can exert bidirectional stimulation on the spinal cord injury area, and can make positively rehabilitation effects of the patient with complete spinal cord injury. A dynamic model was constructed for the patient with spinal cord injury under-stimulation therapy, and the mechanism of the brain-computer interface in rehabilitation training was explored. The effects of the three current rehabilitation treatment methods on the microenvironment in a microscopic nonlinear model were innovatively unified and a complex system mapping relationship from the microscopic axon growth to macroscopic motor functions was constructed. The basic structure of the model was determined by simulating and fitting the data of the open rat experiments. A clinical rehabilitation experiment of spinal cord injury based on brain-computer interface was built, recruiting a patient with complete spinal cord injury, and the rehabilitation training and follow-up were conducted. The changes in the motor function of the patient was simulated and predicted through the constructed model, and the trend in the motor function improvement was successfully predicted over time. This proposed model explores the mechanism of brain-computer interface in rehabilitating patients with complete spinal cord injury, and it is also an application of complex system theory in rehabilitation medicine. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09804-3.

2.
Cogn Neurodyn ; 16(6): 1283-1301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36408074

RESUMO

In the recent years, the increasing applications of brain-computer interface (BCI) in rehabilitation programs have enhanced the chances of functional recovery for patients with neurological disorders. We presented and validated a BCI system with a lower-limb robot for short-term training of patients with spinal cord injury (SCI). The cores of this system included: (1) electroencephalogram (EEG) features related to motor intention reported through experiments and used to drive the robot; (2) a decision tree to determine the training mode provided for patients with different degrees of injuries. Seven SCI patients (one American Spinal Injury Association Impairment Scale (AIS) A, three AIS B, and three AIS C) participated in the short-term training with this system. All patients could learn to use the system rapidly and maintained a high intensity during the training program. The strength of the lower limb key muscles of the patients was improved. Four AIS A/B patients were elevated to AIS C. The cumulative results indicate that clinical application of the BCI system with lower-limb robot is feasible and safe, and has potentially positive effects on SCI patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09801-6.

3.
Brain Sci ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009146

RESUMO

(1) Objective: To investigate the feasibility, safety, and effectiveness of a brain-computer interface (BCI) system with visual and motor feedback in limb and brain function rehabilitation after stroke. (2) Methods: First, we recruited three hemiplegic stroke patients to perform rehabilitation training using a BCI system with visual and motor feedback for two consecutive days (four sessions) to verify the feasibility and safety of the system. Then, we recruited five other hemiplegic stroke patients for rehabilitation training (6 days a week, lasting for 12-14 days) using the same BCI system to verify the effectiveness. The mean and Cohen's w were used to compare the changes in limb motor and brain functions before and after training. (3) Results: In the feasibility verification, the continuous motor state switching time (CMSST) of the three patients was 17.8 ± 21.0s, and the motor state percentages (MSPs) in the upper and lower limb training were 52.6 ± 25.7% and 72.4 ± 24.0%, respectively. The effective training revolutions (ETRs) per minute were 25.8 ± 13.0 for upper limb and 24.8 ± 6.4 for lower limb. There were no adverse events during the training process. Compared with the baseline, the motor function indices of the five patients were improved, including sitting balance ability, upper limb Fugel-Meyer assessment (FMA), lower limb FMA, 6 min walking distance, modified Barthel index, and root mean square (RMS) value of triceps surae, which increased by 0.4, 8.0, 5.4, 11.4, 7.0, and 0.9, respectively, and all had large effect sizes (Cohen's w ≥ 0.5). The brain function indices of the five patients, including the amplitudes of the motor evoked potentials (MEP) on the non-lesion side and lesion side, increased by 3.6 and 3.7, respectively; the latency of MEP on the non-lesion side was shortened by 2.6 ms, and all had large effect sizes (Cohen's w ≥ 0.5). (4) Conclusions: The BCI system with visual and motor feedback is applicable in active rehabilitation training of stroke patients with hemiplegia, and the pilot results show potential multidimensional benefits after a short course of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA