Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175730

RESUMO

Melanocortin 4 receptor (MC4R) mutations are the most common cause of human monogenic obesity and are associated with hyperphagia and increased linear growth. While MC4R is known to activate Gsα/cAMP signaling, a substantial proportion of obesity-associated MC4R mutations do not affect MC4R/Gsα signaling. To further explore the role of specific MC4R signaling pathways in the regulation of energy balance, we examined the signaling properties of one such mutant, MC4R (F51L), as well as the metabolic consequences of MC4RF51L mutation in mice. The MC4RF51L mutation produced a specific defect in MC4R/Gq/11α signaling and led to obesity, hyperphagia, and increased linear growth in mice. The ability of a melanocortin agonist to acutely inhibit food intake when delivered to the paraventricular nucleus (PVN) was lost in MC4RF51L mice, as well as in WT mice in which a specific Gq/11α inhibitor was delivered to the PVN; this provided evidence that a Gsα-independent signaling pathway, namely Gq/11α, significantly contributes to the actions of MC4R on food intake and linear growth. These results suggest that a biased MC4R agonist that primarily activates Gq/11α may be a potential agent to treat obesity with limited untoward cardiovascular and other side effects.


Assuntos
Hiperfagia , Receptor Tipo 4 de Melanocortina , Humanos , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/metabolismo , Hiperfagia/genética , Hiperfagia/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Mutação
2.
Cells ; 12(13)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443835

RESUMO

Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.


Assuntos
Hipotálamo , Obesidade , Humanos , Hipotálamo/metabolismo , Obesidade/metabolismo , Tronco Encefálico/metabolismo , Encéfalo/metabolismo , Ingestão de Energia
3.
Cell Metab ; 34(2): 285-298.e7, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108515

RESUMO

The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic ß cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to ß cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate ß cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in ß cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with ß cells in mice to regulate insulin secretion, and their function is necessary for the ß cell response to hypoglycemia.


Assuntos
Células Secretoras de Insulina , Animais , Hipotálamo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
5.
Am J Physiol Endocrinol Metab ; 320(2): E270-E280, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166186

RESUMO

The G-protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of adeno-associated virus (AAV)-Cre-green fluorescent protein (GFP) into the DMH of Gqαflox/flox:G11α-/- mice. Compared with control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22°C), DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT uncoupling protein 1 (Ucp1) gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6°C for 5 h) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30°C). Thus our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.NEW & NOTEWORTHY This paper demonstrates that signaling within the dorsomedial hypothalamus via the G proteins Gqα and G11α, which couple cell surface receptors to the stimulation of phospholipase C, is critical for regulation of energy expenditure, thermoregulation by brown adipose tissue and the induction of white adipose tissue browning.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Metabolismo Energético/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hipotálamo/metabolismo , Obesidade/genética , Animais , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos/genética , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
6.
Sci Adv ; 6(23): eaaz1341, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32537493

RESUMO

ß-Arrestin-1 and ß-arrestin-2 have emerged as important signaling molecules that modulate glucose fluxes in several peripheral tissues. The potential roles of neuronally expressed ß-arrestins in regulating glucose homeostasis remain unknown. We here report that mice lacking ß-arrestin-1 (barr1) selectively in AgRP neurons displayed impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet, while mice overexpressing barr1 selectively in AgRP neurons were protected against obesity-associated metabolic impairments. Additional physiological, biochemical, and electrophysiological data indicated that the presence of barr1 is essential for insulin-mediated hyperpolarization of AgRP neurons. As a result, barr1 expressed by AgRP neurons regulates efferent neuronal pathways that suppress hepatic glucose production and promote lipolysis in adipose tissue. Mice lacking ß-arrestin-2 (barr2) selectively in AgRP neurons showed no substantial metabolic phenotypes. Our data suggest that agents able to enhance the activity of barr1 in AgRP neurons may prove beneficial as antidiabetic drugs.

7.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32078583

RESUMO

The blood hormone erythropoietin (EPO), upon binding to its receptor (EpoR), modulates high-fat diet-induced (HFD-induced) obesity in mice, improves glucose tolerance, and prevents white adipose tissue inflammation. Transgenic mice with constitutive overexpression of human EPO solely in the brain (Tg21) were used to assess the neuroendocrine EPO effect without increasing the hematocrit. Male Tg21 mice resisted HFD-induced weight gain; showed lower serum adrenocorticotropic hormone, corticosterone, and C-reactive protein levels; and prevented myeloid cell recruitment to the hypothalamus compared with WT male mice. HFD-induced hypothalamic inflammation (HI) and microglial activation were higher in male mice, and Tg21 male mice exhibited a lower increase in HI than WT male mice. Physiological EPO function in the brain also showed sexual dimorphism in regulating HFD response. Female estrogen production blocked reduced weight gain and HI. Targeted deletion of EpoR gene expression in neuronal cells worsened HFD-induced glucose intolerance in both male and female mice but increased weight gain and HI in the hypothalamus in male mice only. Both male and female Tg21 mice kept on normal chow and HFD showed significantly improved glycemic control. Our data indicate that cerebral EPO regulates weight gain and HI in a sex-dependent response, distinct from EPO regulation of glycemic control, and independent of erythropoietic EPO response.


Assuntos
Encéfalo/metabolismo , Eritropoetina/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Fatores Sexuais , Animais , Glicemia/metabolismo , Comportamento Alimentar , Feminino , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Transgênicos , Receptores da Eritropoetina/genética
8.
J Biol Methods ; 6(3): e116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453263

RESUMO

Agouti-related peptide (AgRP) neurons of the hypothalamus play a role in hunger-triggered food intake, stability of body weight, and long-term energy balance. A recent study showed that activation of the Gs-linked G protein-coupled receptors (GCPR) expressed by hypothalamic AgRP neurons promotes a sustained increase in food intake. Enhanced AgRP release has been the postulated underlying mechanism. Here, we confirmed that activation of Gs-coupled receptors expressed by AgRP neurons in the arcuate nucleus (ARC) of the hypothalamus, which is the primary brain region for the synthesis and release of AgRP, leads to increased release of AgRP in the paraventricular nucleus of the hypothalamus (PVN). We were unable to confirm changes in AgRP expression or intracellular content using traditional histological techniques. Thus, we developed an assay to measure AgRP in the extracellular fluid in the brain using large molecular weight cut-off microdialysis probes. Our technique enables assessment of brain AgRP pharmacokinetics under physiological conditions and in response to specific pharmacological interventions designed to modulate AgRP signaling.

9.
Mol Metab ; 25: 142-153, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31014927

RESUMO

OBJECTIVE: Gsα couples multiple receptors, including the melanocortin 4 receptor (MC4R), to intracellular cAMP generation. Germline inactivating Gsα mutations lead to obesity in humans and mice. Mice with brain-specific Gsα deficiency also develop obesity with reduced energy expenditure and locomotor activity, and impaired adaptive thermogenesis, but the underlying mechanisms remain unclear. METHODS: We created mice (DMHGsKO) with Gsα deficiency limited to the dorsomedial hypothalamus (DMH) and examined the effects on energy balance and thermogenesis. RESULTS: DMHGsKO mice developed severe, early-onset obesity associated with hyperphagia and reduced energy expenditure and locomotor activity, along with impaired brown adipose tissue thermogenesis. Studies in mice with loss of MC4R in the DMH suggest that defective DMH MC4R/Gsα signaling contributes to abnormal energy balance but not to abnormal locomotor activity or cold-induced thermogenesis. Instead, DMHGsKO mice had impaired leptin signaling along with increased expression of the leptin signaling inhibitor protein tyrosine phosphatase 1B in the DMH, which likely contributes to the observed hyperphagia and reductions in energy expenditure, locomotor activity, and cold-induced thermogenesis. CONCLUSIONS: DMH Gsα signaling is critical for energy balance, thermogenesis, and leptin signaling. This study provides insight into how distinct signaling pathways can interact to regulate energy homeostasis and temperature regulation.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Glucose/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Sistema Nervoso Simpático/metabolismo
10.
J Med Chem ; 62(3): 1502-1522, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30605331

RESUMO

(N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A1 adenosine receptor (A1AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A1AR compatibility. N6-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A1AR) and known truncated N6-dicyclopropylmethyl methanocarba 7 (MRS5474) were drug-like. The pure diastereoisomer of known riboside 4 displayed high hA1AR selectivity. Methanocarba modification reduced A1AR selectivity of N6-dicyclopropylmethyl and endo-norbornyladenosines but increased ribavirin selectivity. Most analogues tested (ip) were inactive or weak in inducing mouse hypothermia, despite mA1AR full agonism and variable mA3AR efficacy, but strong hypothermia by 9 depended on A1AR, which reflects CNS activity (determined using A1AR or A3AR null mice). Conserved hA1AR interactions were preserved in modeling of 9 and methanocarba equivalent 24 (∼400-fold A1AR-selective). Thus, we identified, and characterized in vivo, ribose and methanocarba nucleosides, including with A1AR-enhancing N6-dicyclobutylmethyl-adenine and 1,2,4-triazole-3-carboxamide (40, MRS7451) nucleobases.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Adenosina/síntese química , Agonistas do Receptor A1 de Adenosina/síntese química , Agonistas do Receptor A1 de Adenosina/farmacocinética , Animais , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/farmacocinética , Células CHO , Cricetulus , Desenho de Fármacos , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptor A1 de Adenosina/metabolismo , Relação Estrutura-Atividade
11.
Nutr Diabetes ; 7(12): 2, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259155

RESUMO

Insulin-like growth factor 1 (IGF1) is a key factor for tissue growth and fuel metabolism. The potential function of central IGF1 remains unclear. We previously observed that IGF1 expression is increased in the hypothalamus of obese mice lacking STAT5 in the central nervous system (CNS). In this study, we explored the potential metabolic function of central IGF1 by intracerebroventricular (ICV) injection of IGF1, over-expression of central IGF1 by administering an adeno-associated virus (AAV), and ICV injection of an anti-IGF1 antibody. Mice that over-expressed central IGF1 displayed increased appetite, improved glucose tolerance and insulin sensitivity, decreased Pomc levels in the hypothalamus, and increased UCP1 expression in brown fat tissue. This is the first study demonstrating that central IGF1 regulates several important metabolic functions.


Assuntos
Intolerância à Glucose/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Resistência à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Desacopladora 1/metabolismo
12.
J Clin Invest ; 127(2): 500-510, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27991864

RESUMO

Gsα, encoded by Gnas, mediates hormone and neurotransmitter receptor-stimulated cAMP generation. Heterozygous Gsα-inactivating mutations lead to obesity in Albright hereditary osteodystrophy (AHO) patients, but only when the mutations occur on the maternal allele. This parent-of-origin effect is due to Gsα imprinting in the CNS, although the relevant CNS regions are unknown. We have now shown that mice with a Gnas gene deletion disrupting Gsα expression on the maternal allele, but not the paternal allele, in the dorsomedial nucleus of the hypothalamus (DMH) developed obesity and reduced energy expenditure without hyperphagia. Although maternal Gnas deletion impaired activation of brown adipose tissue (BAT) in mice, their responses to cold environment remained intact. Similar findings were observed in mice with DMH-specific deficiency of melanocortin MC4R receptors, which are known to activate Gsα. Our results show that Gsα imprinting in the DMH underlies the parent-of-origin metabolic phenotype that results from Gsα mutations and that DMH MC4R/Gsα signaling is important for regulation of energy expenditure and BAT activation, but not the metabolic response to cold.


Assuntos
Tecido Adiposo Marrom , Cromograninas , Núcleo Hipotalâmico Dorsomedial , Metabolismo Energético/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Impressão Genômica , Mutação , Obesidade , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Alelos , Animais , Cromograninas/genética , Cromograninas/metabolismo , Temperatura Baixa , Núcleo Hipotalâmico Dorsomedial/metabolismo , Núcleo Hipotalâmico Dorsomedial/fisiopatologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/metabolismo , Pseudo-Hipoparatireoidismo/fisiopatologia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética
14.
Nat Commun ; 7: 10268, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743492

RESUMO

Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.


Assuntos
Proteína Relacionada com Agouti/genética , Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotálamo/citologia , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Técnicas de Patch-Clamp , Fosfoproteínas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
15.
Methods Mol Biol ; 1335: 205-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26260603

RESUMO

During the past few years, CNO-sensitive designer G protein-coupled receptors (GPCRs) known as DREADDs (designer receptors exclusively activated by designer drugs) have emerged as powerful new tools for the study of GPCR physiology. In this chapter, we present protocols employing adeno-associated viruses (AAVs) to express a Gq-coupled DREADD (Dq) in two metabolically important cell types, AgRP neurons of the hypothalamus and hepatocytes of the liver. We also provide examples dealing with the metabolic analysis of the Dq mutant mice after administration of CNO in vivo. The approaches described in this chapter can be applied to other members of the DREADD family and, of course, different cell types. It is likely that the use of DREADD technology will identify physiologically important signaling pathways that can be targeted for therapeutic purposes.


Assuntos
Dependovirus/genética , Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Glicemia/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Vírion/genética
16.
PLoS One ; 9(10): e111865, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360708

RESUMO

The opening-duration of the NMDA receptors implements Hebb's synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the "synaptic coincidence-detection time-duration" hypothesis vs. "GluN2B intracellular signaling domain" hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the "GluN2B intracellular signaling domain" hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10-100 Hz range while requiring intact long-term depression capacity at the 1-5 Hz range.


Assuntos
Memória/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Sequência de Aminoácidos , Animais , Comportamento Animal , Região CA1 Hipocampal/fisiologia , Sinais (Psicologia) , Fenômenos Eletrofisiológicos , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/metabolismo , Prosencéfalo/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
17.
Sci Rep ; 3: 1036, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23301157

RESUMO

The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3-5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.


Assuntos
Memória de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Depressão , Medo , Hipocampo/fisiologia , Aprendizagem em Labirinto , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal
18.
J Comp Neurol ; 521(8): 1844-66, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23172108

RESUMO

The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothalamus (PVN) to the CA2 as well as a projection from pyramidal neurons of the CA2 to the supramammillary nuclei. These projections were confirmed by retrograde tracing. As expected, we observed CA2 afferent projections from neurons in ipsilateral entorhinal cortical layer II as well as from bilateral dorsal CA2 and CA3 using retrograde tracers. Additionally, we saw CA2 neuronal input from bilateral medial septal nuclei, vertical and horizontal limbs of the nucleus of diagonal band of Broca, supramammillary nuclei (SUM), and median raphe nucleus. Dorsal CA2 injections of adeno-associated virus expressing green fluorescent protein revealed axonal projections primarily to dorsal CA1, CA2, and CA3 bilaterally. No projection was detected to the entorhinal cortex from the dorsal CA2. These results are consistent with recent observations that the dorsal CA2 forms disynaptic connections with the entorhinal cortex to influence dynamic memory processing. Mouse dorsal CA2 neurons send bilateral projections to the medial and lateral septal nuclei, vertical and horizontal limbs of the diagonal band of Broca, and SUM. Novel connections from the PVN and to the SUM suggest important regulatory roles for CA2 in mediating social and emotional input for memory processing.


Assuntos
Região CA2 Hipocampal/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Lateralidade Funcional , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/metabolismo , Masculino , Camundongos , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Estilbamidinas/metabolismo
19.
Int J Neuropsychopharmacol ; 15(8): 1135-48, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21906419

RESUMO

Research suggests that dysfunctional glutamatergic signalling may contribute to depression, a debilitating mood disorder affecting millions of individuals worldwide. Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in approximately 70% of patients. Glutamate evokes the release of D-serine from astrocytes and neurons, which then acts as a co-agonist and binds at the glycine site on the NR1 subunit of NMDA receptors. Several studies have implicated glial deficits as one of the underlying facets of the neurobiology of depression. The present study tested the hypothesis that D-serine modulates behaviours related to depression. The behavioural effects of a single, acute D-serine administration were examined in several rodent tests of antidepressant-like effects, including the forced swim test (FST), the female urine sniffing test (FUST) following serotonin depletion, and the learned helplessness (LH) paradigm. D-serine significantly reduced immobility in the FST without affecting general motor function. Both D-serine and ketamine significantly rescued sexual reward-seeking deficits caused by serotonin depletion in the FUST. Finally, D-serine reversed LH behaviour, as measured by escape latency, number of escapes, and percentage of mice developing LH. Mice lacking NR1 expression in forebrain excitatory neurons exhibited a depression-like phenotype in the same behavioural tests, and did not respond to D-serine treatment. These findings suggest that D-serine produces antidepressant-like effects and support the notion of complex glutamatergic dysfunction in depression. It is unclear whether D-serine has a convergent influence on downstream synaptic plasticity cascades that may yield a similar therapeutic profile to NMDA antagonists like ketamine.


Assuntos
Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Serina/administração & dosagem , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Fenilenodiaminas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Natação
20.
PLoS One ; 6(4): e19326, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559402

RESUMO

Pattern completion, the ability to retrieve complete memories initiated by subsets of external cues, has been a major focus of many computation models. A previously study reports that such pattern completion requires NMDA receptors in the hippocampus. However, such a claim was derived from a non-inducible gene knockout experiment in which the NMDA receptors were absent throughout all stages of memory processes as well as animal's adult life. This raises the critical question regarding whether the previously described results were truly resulting from the requirement of the NMDA receptors in retrieval. Here, we have examined the role of the NMDA receptors in pattern completion via inducible knockout of NMDA receptors limited to the memory retrieval stage. By using two independent mouse lines, we found that inducible knockout mice, lacking NMDA receptor in either forebrain or hippocampus CA1 region at the time of memory retrieval, exhibited normal recall of associative spatial reference memory regardless of whether retrievals took place under full-cue or partial-cue conditions. Moreover, systemic antagonism of NMDA receptor during retention tests also had no effect on full-cue or partial-cue recall of spatial water maze memories. Thus, both genetic and pharmacological experiments collectively demonstrate that pattern completion during spatial associative memory recall does not require the NMDA receptor in the hippocampus or forebrain.


Assuntos
Memória , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Mapeamento Encefálico/métodos , Cruzamentos Genéticos , Feminino , Genótipo , Heterozigoto , Hipocampo/fisiologia , Homozigoto , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Prosencéfalo/fisiologia , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...